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Scaling density profiles of critical O(/N)-symmetric systems confined to a film geometry are analyzed
by field-theoretic renormalization-group techniques in d =4 —¢ spatial dimensions. At bulk criticality
we explicitly calculate the energy density profile for five different boundary conditions and determine
their corresponding universal scaling functions. In order to discuss the influence of the boundary condi-
tions at the two surfaces of the film on the global shape of the profiles, a suitable exponentiation scheme
is constructed. Using these exponentiated scaling functions as well as results from conformal field
theory, the shapes of the energy density profiles in d =2,3, and 4 are compared. Finally, we discuss the
short-distance behavior of the energy density profiles close to the surfaces of the film as it follows from

the knowledge of the full profiles in first order €.

PACS number(s): 64.60.Fr, 05.70.Jk, 68.15.+e¢, 68.35.Rh

I. INTRODUCTION

The thermodynamic behavior of systems in the vicinity
of their critical or multicritical points can be described
successfully by means of field-theoretic methods [1,2].
The field-theoretic renormalization group provides sys-
tematic approximations for universal quantities such as
critical exponents or certain amplitude combinations
[3,4] by, e.g., a perturbation expansion around the upper
critical dimension d_, with d, =4 in the case of a standard
critical point. Within this framework thermodynamic
quantities of critical systems are governed by scaling
operators ¥(r) that are local quantities. In the language
of the well-known ®* theory (see Sec. II), the most com-
mon examples for such scaling operators are the order pa-
rameter field ®(r) and the energy density field —-;—<I>2(r).
In spatially homogeneous and isotropic systems the
thermal average (W(r)) of a single scaling operator W(r)
is a constant v,. Surfaces break this spatial symmetry so
that the thermal average of W¥(r) exhibits a spatial varia-
tion. For W(r)=®(r) one obtains the order parameter
profile m(r)=(®(r)) and setting W(r)=—1®?(r) yields
the energy density profile e (r)=—1(®*r)). In a semi-
infinite geometry, which is bounded by a plane wall such
that the z component of the position vector r=(r,z)
measures the distance from this wall, these profiles are
particularly simple. The system is still homogeneous and
isotropic with respect to r; and therefore any scaling den-
sity profile is only a function of z. At a critical point of
the bulk system the z dependence of the scaling density
profile {¥(r)), ,, in a corresponding semi-infinite system
is already fixed by the requirement that
(W(r;,z—»)), ,=1, and by the scaling dimension xy
of W(r). For distances z from the wall that are large com-
pared to microscopic length scales one finds [5]

(W(r,2) o =Wy =Agz ¥, (1.1)

where Ay is a nonuniversal amplitude. The scaling di-
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mension xy in Eq. (1.1) is given by xy =8/v for the mag-
netization density and by xy =(1—a)/v for the energy
density, where a, 3, and v are the critical exponents of
the specific heat, the order parameter, and the bulk corre-
lation length, respectively. Note that Eq. (1.1) holds only
for distances z that are large compared to microscopic
length scales. In fact, the spatial variation of, say, the
magnetization profile near the boundary of a semi-infinite
Ising lattice is governed by the lattice constant, which en-
sures the existence of a finite value of the magnetization
density at the surface. Likewise, in a binary liquid mix-
ture the molecular diameter provides the microscopic
scale on which the composition profile crosses over to a
finite value at a wall immersed into the fluid. The pres-
ence of a microscopic length scale therefore serves as a
cutoff for the scaling density profiles as given by Eq. (1.1)
at microscopic distances from a wall where nonuniversal
properties become important.

For thermodynamic conditions slightly off the critical
point the power law in Eq. (1.1) is replaced by the scaling
law (see, e.g., Ref. [6])

<W(rlpz)>w/z_1/’b=sz_xwfi(2/§i) »

which again holds only for macroscopic distances z from
the wall. Here f, (y ) denotes a universal scaling func-
tion for T >T,, and f_(y_) denotes the corresponding
scaling function for T' < T, , with the property f.(0)=1,
where T, denotes the bulk critical temperature. For
short-ranged interactions and within the Ising universali-
ty class (see Sec. II) the macroscopic distance z from the
wall in the argument y, =z/£, is scaled by the bulk
correlation length £,=E3(T—T,,)/T,,| " above and
below the bulk critical temperature T, ,, respectively.
Note that the property f(0)=1 of the scaling function
ensures that in the limit T— T ,, Eq. (1.2) reduces to Eq.
(1.1) for T—T,,.

From the literature one knows several examples of
scaling density profiles in semi-infinite geometries in

(1.2)
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d =4—¢ that have been calculated by field-theoretic
renormalization-group methods. The energy density
profile e (z) has been discussed in Ref. [6] for T > T, , and
the ordinary surface universality class (see Sec. II and
Ref. [5]). The order parameter profile m (z) in a semi-
infinite geometry is of special interest in the context of
critical adsorption [7]. The full profile m (z) above and
below bulk criticality [see Eq. (1.2)] has recently been cal-
culated for the extraordinary transition, i.e., in the pres-
ence of a surface field 4, within the Ising universality
class [8]. Furthermore, the energy density profile enters
the exact variational formulation of two-dimensional lay-
ered Ising models [9].

In a film geometry a second wall is present at z =L,
where L is the thickness of the film. Scaling density
profiles in films can be studied under both local and
global aspects. In the first case one is interested in the
perturbation of the profile near one wall, i.e., at z <<L,
due to the presence of the other (far) wall at z=L. This
perturbation has become known as the distant wall
correction or the critical wall perturbation [10-12]. To
give an example, let @ represent the composition of a
binary liquid mixture close to its critical demixing point
(T=T,, ®=P_) [10] (see also Ref. [13]). A plate that is
immersed into the mixture will generally show a prefer-
ential affinity for one of the components. At the critical
demixing point the local average composition
m o, ,,(z)=(®(r)) — P, at a distance z from the wall will
then deviate from zero according to Eq. (1.1) with the ex-
ponent x4 =[3/v. In the magnetic language of the Ising
universality class the plate is characterized by a surface
field h |, which induces either m (0)>0 or m(0) <0, i.e.,
it prefers either one component or the other depending
on the sign of A; [10]. The distant wall correction im-
posed on the composition profile m , ,,(z) by the presence
of a second plate immersed into the critical binary liquid
mixture at a distance L from the first plate can be ex-
pressed by the corresponding film profile mg,, (z) at small
distances z [12]

z

d*
Mam(z <<L)=m  ,,(z) |1+B e ] ,  (1.3)

where m , ,,(z) is given by Eq. (1.1) and d*=3 in three
dimensions. The value of the constant B depends on the
boundary conditions at both the near and the far wall,
where the latter can be characterized by a second surface
field [10] or by a different boundary condition. Scaling
theory does not reveal the form of the correction
displayed in Eq. (1.3). The first derivation of Eq. (1.3)
was based on the postulate that the total free energy of a
film at criticality can be expressed by a local free energy
Sfunctional [10,12], which upon minimization yields Eq.
(1.3) with d*=(2—a)/v. If hyperscaling holds, then the
exponent d * of the distant wall correction coincides with
the spatial dimension d. The structure of the distant wall
correction displayed in Eq. (1.3) has been confirmed in
d =2 for an Ising strip [14] and within the framework of
conformal field theory [15], where it turns out that the
coeflicient B is closely related to the Casimir amplitude A
[16]. In spatial dimensions d =4 —¢ near the upper criti-
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cal dimension d.=4 of simple critical points, Eq. (1.3)
has been studied within the framework of the field-
theoretic renormalization group within which the ex-
ponent relation d * =d has been confirmed [11,17] and the
short-distance expansion of scaling operators near one
wall has been analyzed in order to obtain the general
structure of the corresponding distant wall corrections
[18-20]. Thus the close relationship between B and A
holds also in d =4—¢. A detailed account of the short-
distance expansion and the resulting distant wall correc-
tions is given in Ref. [20] so we refrain from discussing
any details here.

In the following we will focus on the global aspect of
wall effects on scaling density profiles in critical films, i.e.,
we will study the influence of boundary conditions on the
whole shape of the profile. In two-dimensional systems at
the bulk critical point the principle of conformal invari-
ance can be used in order to obtain scaling density
profiles in critical strips from the corresponding simpler
profiles in semi-infinite geometries. A semi-infinite
geometry with a homogeneous or uniform boundary con-
dition can be mapped onto a strip with equal boundary
conditions by means of the conformal transformation
&{=(L /m)Inn, where Imn=0 (upper half plane) and
0=<Im{=L. The principle of conformal invariance estab-
lishes a generalized scaling relation among cumulants of
primary scaling operators [15,21] in these two
geometries. For a single scalar primary scaling operator
W(£,8) with {=r +iz one finds [15,21,22]

(W) gurip =1 (¥ ¥, ) 1y

where the scaling exponent xy = for the order parame-
ter and x4 =1 for the energy density in the Ising univer-
sality class. The scaling density profiles in the upper half
plane with a homogeneous boundary condition along
the real axis can be written as (W(7,%)),,
= Ay[(n—7)/2i] ¥, which follows from pure scaling
arguments. The amplitude A4 is nonuniversal and de-
pends on the scaling operator W. From Eq. (1.4) the cor-
responding scaling density profile in a strip with equal
boundary conditions can be inferred as [22]

(1.4)

L T
Zsin T2 , (1.5)
T

<W(§7§))strip=‘4\l’ L

where z =(£—£)/2i. Note that Eq. (1.5) confirms Eq.
(1.3) for any scaling operator ¥ in d =2 for strips with
equal boundary conditions.

Strips with different boundary conditions a and b along
the two edges, respectively, can.be represented as confor-
mal images of the upper complex half plane with a
boundary condition of type a along the positive real axis
and a boundary condition of type b along the negative
real axis. The scaling density profile of an operator ¥ in
such a half plane reads [16,23]

—xy s
2\/177_7

n=mn
2i

3 4

ab , (1.6)

<w(77777))a,b,oo/2:

where the function F, follows from a generalized confor-
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mal Ward identity that explicitly depends on the com-
bination (a,b) of the boundary conditions [16]. The
boundary conditions @ and b+a can be combined in two
independent ways, namely, (a,b)=(+,—) or (+,0),
where + and — denote a fixed spin-up and a spin-down
boundary condition, respectively, and @ denotes a free
boundary condition. A boundary condition of type + or
— corresponds to the extraordinary surface universality
class and a boundary condition of type @ corresponds to
the ordinary surface universality class (see Sec. II). From
Egs. (1.4) and (1.6) one finds for the order parameter
profile m, ,(z) in an Ising strip [16,23]

—1/8
m, _(2)=A4, —fr—sianLi os-’—TLi ,
—1/8 172 1.7
m (z)=A L sin LES cos LES
+,0\2)= Ap, | T—SIN—/— 57
’ T L 2L

A corresponding analysis can be performed for the ener-
gy density profiles e, ,(z) giving [16]

—1
er _(2)=4, %sm%z 1—4sin21TL£ l ,
. (1.8)
e, o(z)=A £sin173 cos %
+,0 e T L L .

More recent results for the energy density profile for
O(N) symmetric systems confined to strips in d =2 with
more combinations of boundary conditions can be found
in Ref. [24].

A third set of profiles arises for the Potts magnetiza-
tion in a two-dimensional strip for various boundary con-
ditions [16]. The profiles given by Egs. (1.5), (1.7), and
(1.8) give a first impression of the global structure of scal-
ing density profiles in critical films and the impact of
changing the boundary conditions. We will return to this
point in Sec. V. Note that the above examples, except
m o(z) for z— L, confirm Eq. (1.3) in d =2.

For our field-theoretic analysis in d =4—¢ we use the
energy density profile as a paradigm for scaling density
profiles in films at bulk criticality [19]. The energy densi-
ty has the advantage that, in contrast to the order param-
eter, it has a nonvanishing profile of T=T,, in the ab-
sence of symmetry-breaking surface fields, which allows

}l[Q]—fdd_‘r”f dz V<I>(r“, )P+ 2@ 2)+

_ c )
+ [d? [—2"~<I>2(r”,0)-h1,a-<I>(r”,0)+7<I>2(r",L)—hl,b-<I>(r“,L)

where r=a(T —T,,)/T,, is the bare reduced tempera-
ture with a > 0 being a nonuniversal constant, g > 0 is the
coupling constant, h is an external bulk field, and

(V®)’=3N_,(V¢,; )% The surfaces a and b are character-
ized by surface enhancements ¢, and ¢, and surface fields
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us to study the symmetry-conserving boundary condi-
tions that will be introduced in Sec. II. After a general
discussion of the renormalized energy density profile in
Sec. III the energy density profiles for symmetry-
conserving boundary conditions at T=T_, and their
corresponding universal scaling functions are presented
in Sec. IV. In Sec. V we compare our profiles with results
in d =2 and discuss the influence of the boundary condi-
tions in detail. A brief account of the short-distance
behavior of the profiles is given in Sec. VI and our results
are summarized in Sec. VII. Technical details of the cal-
culations are described in Appendixes A-D.

II. MODEL

Within the framework of the field-theoretic renormal-
ization group the so-called ®* Ginzburg-Landau Hamil-
tonian and suitably augmented forms thereof represent
the fixed-point Hamiltonian for systems near critical
points. Apart from bulk systems [1,2], this has been
shown for semi-infinite systems [5] and in particular for
systems confined to regular finite geometries such as, e.g.,
films [25-28] or cubes [28-30]. The following considera-
tions are devoted to an O(N)-symmetric * Ginzburg-
Landau Hamiltonian in a film geometry.

For O(N)-symmetric models the order parameter field
®=(¢;,...,¢y) is a real N-component vector. In par-
ticular the values N =1, 2, and 3, which correspond to
the Ising, the XY, and the Heisenberg universality classes
[1,2], respectively, are most relevant for actual experi-
mental systems [see Refs. [10,13] for binary liquid mix-
tures at the critical demixing points (N =1) and Ref. [28]
for “He near T, (N =2)]. The film geometry consists of
two parallel plane walls each of area A >>L? separated
by a distance L with the critical system confined in be-
tween. L is considered to be large compared to micro-
scopic lengths. In the spirit of the field-theoretic renor-
malization group each of the two surfaces of the critical
system is characterized by surface scaling fields, where
the surface field h; and the surface enhancement ¢, which
couple to ® and ®? at the surface, respectively, are the
most relevant ones [5]. Other surface scaling fields such
as cubic surface fields w lead to corrections to scaling
near the common fixed point w =0 [7] and will therefore
not be considered here. The Ginzburg-Landau Hamil-
tonian for a critical film then has the form

£ [0%r),2) P~ b ®(r),2) ]

> (2.1)

[

h,, and h,,, respectively. The surface enhancements
¢,,¢, can be regarded as local, surface specific shifts of
the bulk reduced temperature 7. Likewise, the surface
fields h; ,,h,; , form localized, surface specific corrections
to the bulk field h. The field-theoretic analysis of critical
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systems with surfaces shows that the Hamiltonian in Eq.
(2.1) already resembles its functional form at the
renormalization-group fixed points. These fixed points
correspond to different surface universality classes charac-
terized by the fixed-point values ¢ = — «, 0, and o of the
surface enhancement ¢ [5]. The value ¢ = — o character-
izes the so-called extraordinary (E) surface universality
class, which in particular contains systems with a
nonzero surface field h, [8,17] so that the phenomenon of
critical adsorption [7,8] must be described within this
universality class. For the field-theoretic analysis of the
energy density profiles in a critical film, however, we
focus on the ordinary (@) and the surface-bulk or special
(SB) surface universality class, which are characterized
by c¢c=cw and O, respectively. Note that
h=h, ,=h, ,=0 in these cases. The fixed-point value
¢ = co corresponds to a Dirichlet (D) boundary condition
imposed on the order parameter field ®(r,z) with respect
to z at the surface. Within mean-field theory ¢ =0 corre-
sponds to a Neumann (N) boundary condition. For the
film geometry discussed here the @ and the SB surface
universality classes can be combined to
(a,b)=(0,0),(0,SB),(SB,0), and (SB,SB), i.e., one has
the following combinations of D and N boundary condi-
tions for <I>(r“,z)

o=, c,,:oo~=»<p(r”,0)=q>(r“,L)=o (D—D),

¢ =0, €=0=&(r,0)=""(r,L)=0 (D—N),
2.2)

Ca=0, Cb=°°‘$’—"—(l'”,0)=‘l>(r”,L)=0 (N—'D) )

¢=0, ¢,=0—2(r,0=2(r,1)=0 (N—N) .

oz

Note that the combination N — D of boundary conditions
is equivalent to the combination D —N applied to
<I>(r",L —z) at z=0,L. Furthermore, we note that the
SB surface universality class (N boundary condition) cor-
responds to a multicritical point, which is located at ¢ =0
only within the dimensional regularization scheme [1],
which we adopt for the calculation of the energy density
profiles. Beyond mean-field theory fluctuations destroy
the equivalence of the condition ¢ =0 and the Neumann
boundary condition for the order parameter (see Ref. [5]).

In contrast to the E surface universality class, which is
characterized by a symmetry-breaking surface field, the
boundary conditions in Eq. (2.2) that are associated with
the @ and SB surface universality classes can be regarded
as symmetry conserving. If surface contributions to the
Hamiltonian given by Eq. (2.1) are absent, periodic and
antiperiodic boundary conditions are considered as a
second set of symmetry-conserving boundary conditions.
The order parameter in this case has the properties

@(r,z+L) (periodic)
Pp2)= | _@(r,,z +L) (antiperiodic), 2.3)
respectively. The free propagators G.*%(p,p’;z,z’)

fulfill the boundary conditions listed in Egs. (2.2) and
(2.3) with respect to the perpendicular coordinates z and
z'. Their explicit form is given in Appendix B.
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III. RENORMALIZED
ENERGY DENSITY PROFILE

In the vicinity of a bulk critical point the internal ener-
gy U(T,L) of a film measured in units of k5T, , and per
area A can be decomposed into a regular part u"8(¢,L)
and a singular part u%"(¢,L) as functions of the reduced
temperature ¢ (see below) and the film thickness L accord-
ing to

UT,L) _

lim =y 8(¢,L)+u""8(s,L) .

A— kBTc,bA (31)

In the following we will refer to u ™8 and u *® as the regu-
lar and the singular energy density per area, respectively.
Using the thermodynamical relation U=—T23/
AT (F/T) between the internal energy % and the free en-
ergy F of the film, the regular and the singular energy
density can be related to the regular and the singular part
of the free energy density, respectively. The singular con-
tribution to thermodynamic functions can be obtained
from the renormalized field-theoretic model described in
Sec. II. The renormalization procedure for the free ener-
gy density has already been described in Ref. [26] in great
detail so that here we present only the conclusions for the
singular part u*"(¢,L) of the energy density. First, we
define a bare energy density #(7,L) for the field-theoretic
model in Eq. (2.1) by

a(r,L)=—> [ @, 2)dz , 32
which is in accordance with the thermodynamical rela-
tion

— d -+

#(r,L)=——f(r,L), (3.3)

or

where f(7,L) is the bare free energy density defined in
Ref. [26]. Note that the thermal average { ®*(r|,z)) with
respect to # given by Eq. (2.1) does not depend on T
For simplicity the dependence of 7 and f on the bare cou-
pling constant g has been dropped in Egs. (3.2) and (3.3).
In the absence of external fields the renormalized thermo-
dynamical functions, which give access to the singular
thermodynamical behavior of the system, are only func-
tions of the renormalized reduced temperature ¢ and the
renormalized coupling constant u, which are given by

r=u’Z,t, g=27"u*Z, u (3.4)
within the dimensional regularization scheme, where
e=4—d, Z, and Z, are the usual bulk renormalization
factors [1,2], and p is an arbitrary momentum scale. In
accordance with Eq. (3.3) we define the renormalized en-
ergy density u ®(¢,L) by

uR(t,L)=—ifR(t,L) , 3.5)
where in a simplified notation f&(z, L)— f(r,L)
—flr, L) = f (7, LX7—71)—LF_(7,,L)(7—7,)* denotes
the renormalized free energy density as defined in Ref.
[26]. From Eq. (3.5) we therefore have the explicit renor-
malization prescription
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uR(t, L)=pZ,[@(7,L)—=&(r,, L)~ T (11, L)(7—7,)]

(3.6)

for the renormalized energy density in terms of the bare
energy density # [see Eq. (3.2)] and its first derivative &,
with respect to 7. Besides the multiplicative renormaliza-
tion by Z, the energy density requires two subtractions
taken at a reference value 7 of the bare reduced tempera-
ture 7, which we choose according to

T =w*Z,sgnt 3.7)

(see Ref. [26]). Note that the subtractions in Eq. (3.6)
form a Taylor polynomial of first degree for the bare en-
ergy density at the reference point 7;. Besides containing
the critical singularities u ®(z, L) therefore fulfills the nor-
malization conditions

u®(sgn,L)=0, uX(sgnt,L)=0. (3.8)

In order to simplify the notation we will identify
S"’g(t L) in Eq. (3.1) with the renormalized energy densi-
ty u®(t,L) in the following.
In a second step we define a bare energy density profile
e(r,z,L) by

e(r,z,L)=—1(®%r,2)) 3.9)

so that the bare energy density # (7, L) is the integral over
e(1,z,L) with respect to z within the dimensional regular-
ization scheme used here [see Eq. (3.2)]. The renormal-
ized energy density can then be represented in the form

wR(t,L)= [ "eR(1,7,L)dz , (3.10
0

where the renormalized energy density profile e®(t,z,L) is
related to the bare energy density profile e(r,z,L) by ap-
plying the renormalization prescription for #(7,L) [see
Eq. (3.6)] directly to (7,z,L). One therefore has

R(t,z,L)=p’Z,[e(r,z,L)—2(7,2,L)

—e (1,2, L)(t—7)] (3.11)

so that e®(t,z,L) fulfills the same normalization condi-
tions as u®(z,L) [see Eq. (3.8)]. The renormalization
prescription in Eq. (3.11) differs from the prescription for
the renormalized energy density profile in a semi-infinite
system given in Ref. [6] only with respect to the prefactor
u?. The renormalized energy density profile e®(¢,z,L) in
Eq. (3.11) has a finite limit as z—0 or L because the limit
z—0 in Eq. (3.11) first means that z becomes very small
compared to L, but remains large compared to any mi-
croscopic length. Therefore the renormalized energy den-
sity profile e®(z,z,L) in the film approaches its counter-
part e® ,(t,z) in a semi-infinite geometry that remains
finite as z is further reduced to zero [6]. By the same
reasoning e®(t,z,L) approaches a finite value as z— L be-
cause in this case z'=L —z becomes small compared to
L. From the short discussion after Eq. (1.1) one may
come to the conclusion that e®(t,z,L) contains a micro-
scopic length scale that manages the crossover to a finite
value as z—0 or L. This is in fact the case because in-
stead of the reduced temperature ¢, the bulk correlation
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length £,(¢)=£7F|t| ™ can serve as the third argument in
e®(t,z,L). If one defines

e(t,z,L)=p’Z,e(t,z,L) (3.12)

as a multiplicatively renormalized energy density profile
that does not fulfill the normalization conditions given by
Eq. (3.8), e®(t,z,L) can be written in the form

eR(t,z,L)=e(t,z,L)—e(sgnt,z,L)

—e,(sgnt,z,L)(t —sgnt) . (3.13)

After changing the variables according to
e(t,z,L)=@(£,z,L), the corresponding renormalized en-
ergy density profile e®(£,,z,L) contains the same sub-
tractions as in Eq. (3.13), which depend on the micro-
scopic correlation length amplitude £5 =£.(t, =sgnt) ac-
cording to

eR(f 2, L) =2(£4,2,L)—2(£5,2,L)
+vEse,, (E5,5 L6 /E5) " —1] .
(3.14)

The desired microscopic scale is therefore set by £€5. The
profile e(t,z,L)=e(§,,z,L), however, only depends on
the macroscopic lengths as indicated by the arguments.
In the limit z—O0 (i.e., z <<L) e(t,z,L) approaches its
counterpart in a semi-infinite geometry (see Ref. [6]),
which is of the form indicated by Eq. (1.2). Therefore
e(t,z,L) diverges like z 17¥/Y a5 2,0 and like
(L—2z)"1"®asz L.

We use the remainder of this section to show that the
renormalized energy density profile can be represented by
a universal scaling function. The main argument for this
statement can be obtained from the solution of the
renormalization-group equations (RGEs) for e®(z,z,L),
which are given by [6]

h 9 __t 8 3 | ro
8,u+B(u) ) ot wa) | o,
t a 1
——+ Lot R :
Blu ) W) ot wa |€ (3.15)
t—sgn R‘
'V(u) t =sgnt

(see also Ref. [26]), where B(u) and v(u) are the standard
Wilson functions [1,2]. Note that the macroscopic
lengths z and L are not renormalized and therefore they
do not occur in Eq. (3.15). Using the method of charac-
teristics the RGEs can be solved straightforwardly and
we refer to Sec. III of Ref. [26] for details. With the
well-known nonuniversal fixed-point amplitude factor

*

EXu=["

u

11

v v(u)

du

3.1
B(u) (3.16)

we have for et’f(t,z,L) the fixed-point solution
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eXt,z,L)=L ~uL)" E*(u)

2

X a—i;hi(E:(u)(,uL)V"ltl,z/L) (3.17)
[see Eq. (3.13) in Ref. [26]], where u* is the infrared
stable renormalization-group fixed point B(u*)=0 and
v=v(u*). The prefactor L ¢ yields the correct naive di-
mension for the energy density profile, which according
to Egs. (3.1) and (3.10) is given by an inverse volume.
The scaling functions 4 , (w,x) for t >0 and A _(w,x) for
t <0 are left undetermined by the RGEs. The scaling ar-
guments w and x are defined by

w=EX(u)pL)|tl, x=z/L . (3.18)

According to Eq. (3.17) the renormalized energy density
profile e®(t,z,L) has the fixed-point form [see also Eq.
(3.16) in Ref. [26]]

e®(t,z,L)=L 4 uL)""E*(u) |h 1 (w,x)—h(w,x)

oh
ow

’

(w,x)(w—wy)

(3.19)

where the reference value w, of the scaling variable w is
given by w;=(uL)!”YE*(u). Accordingly, the multipli-
catively renormalized energy density profile e (¢,z,L) [see
Eq. (3.12)] is given by

e(t,z,L)=L ~4uL)"*E*(u)h 4 (w,x) (3.20)

at the renormalization-group fixed point. The amplitude
factor EX(u) given by Eq. (3.16) is nonuniversal because
it depends on the renormalized coupling constant u,
which in turn is a function of the microscopic parameters
of the system and is therefore nonuniversal itself. How-
ever, the u dependence of e®(t,z,L) is completely ab-
sorbed in the amplitude factor E} (u), which appears
only in the scaling argument w and in the prefactor of the

J
L 1/v
&

eR(&y,z,L)=L1 By, x)—hi(y,x)—

where y, =L /£F.

As we restrict our discussion of the energy density
profiles to the case t =0 from the beginning we are not
able to evaluate Eq. (3.11). Therefore we resort to Eq.
(3.12), which yields the multiplicatively renormalized en-
ergy density profile e(0,z,L) and the scaling function
h.(0,x) or h.(0,x), respectively [see Egs. (3.20) and
(3.23)]. In view of our main objective, the restriction to
Eq. (3.12) poses of course no limitation on the possible
choice of the boundary conditions so that e®(0,z,L) and
e(0,z,L) are equally well suited for our purposes. Final-
ly, we note that even for the investigation of distant wall
corrections the different behavior of e®(0,z,L) and

4
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profile. The functions h, do not depend on u, i.e., they
are universal.

For short-ranged interactions and within the Ising
universality class (N =1) the scaling argument w can be
expressed in terms of the bulk correlation length
&, =£EF|t|7. The aforementioned conditions allow one
to adopt the definition of £, via the second moment of
the bulk two-point correlation function G (u,x, |¢|,u) ac-
cording to

1 Jd%xGiux, |t w)
2d  [d% Gilu,x,tl,u)

& (3.21)

[see Eq. (4.2) in Ref. [26]], which implies [see Eq. (4.5) in

Ref. [26]]

172

k
= | pTUEL ]

+_ [ fx
&0 2d (3.22)

for the correlation length amplitude £, where k is a
universal constant. Defining a scaling argument
y+=L /&, and a universal scaling function A, (y.,x),
Eq. (3.20) can be rewritten according to

e(t,z,L)=e(&,2,L)

1/(2v)
_p-a| L] R
& 2d
1/(2v)
L L |z
1| 2d &, | 'L
1/v
_ L ~
=L | Ria,x) . (3.23)
&

Note that, unlike 4, the scaling functions h + depend on
the definition of the correlation length £.. Finally, the
renormalized energy density profile 2R(€,,z,L) [see Eq.
(3.14)] has the representation

.

(O R Al (R g —y%i”)} , (3.24)

r

e(0,z,L) for z—0 is irrelevant because within continuum
theory the coordinate z is always much larger than any
microscopic length scale so that, although z <<L in this
case, one is still far away from the limit z—0.

IV. SCALING FUNCTIONS
AT BULK CRITICALITY

The energy density profiles &(r,z,L), e(t,z,L), and
e®(t,z,L) defined in Sec. III depend on the combination
(a,b) of boundary conditions at the surfaces (z =0,L) of
the film. We keep track of this dependence by assigning
the subscript a,b to the energy density profiles in the fol-
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FIG. 1. One-loop Feynman diagram for the bare energy den-
sity profile (7,z,L). The momentum p running in the loop cor-
responds to the parallel momentum in the spectral representa-
tion of the Hamiltonian [see Eqgs. (B1) and (B2)]. The coordi-
nate z indicates the position between the plates where €,, is
evaluated.

lowing.

In order to obtain a field-theoretic approximation for
e, »(t =0,2,L) [see Eq. (3.12)] we first determine the bare
energy density profile €, ,(7=0,z,L) from Egs. (2.1) and
(3.9) to first-order perturbation theory in the bare cou-
pling constant g. The propagators and vertices needed to
facilitate the perturbation expansion in terms of Feynman
diagrams are listed in Eqs. (B4)-(B9) in Appendix B for
all boundary conditions under consideration [see Egs.
(2.2) and (2.3)]. To leading order the energy density
profiles are given by the one-loop diagram shown in Fig.
1. According to the standard Feynman rules [1,2], the
analytic expression that corresponds to Fig. 1 in the case
of O(N) symmetry is given by

_(1)(T,Z’L)___f———P—G‘O’“’b(p;z,z) ,

4.1
(2m)? 1! @

where the Green’s functions G©%%(p;z,z’) are defined by
Eq. (C2) in Appendix C for 7=0. The (d—1)-
dimensional integration over the parallel momentum p in
Eq. (4.1) can most conveniently be performed using the
dimensional regularization scheme (see, e.g., Ref. [1]).
For 7=0 a detailed derivation of the one-loop contribu-
tions E;},}(O,Z,L) to the bare energy density profiles is
presented in Appendix C, which the reader should con-
sult for the implementation of the dimensional regulari-
zation scheme in this case. At the upper critical dimen-
sion d =d_. =4 the one-loop profiles derived in Appendix
C can be regarded as exact.

The first-order correction to the bare energy density
profile is given by the two-loop Feynman diagram shown
in Fig. 2. The coordinate z indicates the position between
the plates where the profile is evaluated and z’ indicates
the position of the vertex, which must be integrated over
the interval [0,L]. The parallel momentum labels p; and
p, already account for momentum conservation at the
vertex [see Eq. (B9)]. According to the standard Feyn-
man rules, Fig. 2 corresponds to the expression
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FIG. 2. Two-loop Feynman diagram for the bare energy den-
sity profile e(7,z,L). The coordinate z indicates the position of
€, 5. Integrations must be performed over the momenta p, and
p; and over the vertex position z'. The combinatorial factor of
this diagram is 12.

_(2)(T,Z,L)
di1p

_gNN+2 f f_(z. )d—l [G(O)a b(p :2,2 )]2

dd—lp2
x f (2m)? 1 G

X(pyz',z')

(0)a,b

4.2)

for the O(N)-symmetric Hamiltonian given by Eq. (2.1).
However, the evaluation of Eq. (4.2) turns out to be a ma-
jor task even in the case 7=0 on which we focus here A
guideline of how to extract the € expansion of g, ea 2(0,2,L)
from the integrals in Eq. (4.2) is given in Appendix D,
where the dimensional regularization scheme has been
applied throughout the calculation.

Using the results from Appendixes C and D the multi-
plicative renormalization prescription in Eq. (3.12) can be
carried out with the well-known bulk renormalization Z
factors [1,2]

N+2 u

Z=1+—5"—+0u Y, Z,=1+0(w), 4.3)
which yield the representation
e, 5(0,z,L)
=u?[Z,2.)(0,2,L)+23(0,z,L)+0 (u?)] (4.4)

to two-loop order. At the renormalization-group fixed

point [1,2]

«__ 3€

2
N 18 + 0 (g%)

4.5)

one obtains the € expansions for ¢, ,(0,z,L) in d =4—¢.
For equal boundary conditions we find
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ri{4_,
e@@(o,z,L)=—1!———2————L_d(,uL)2 —”—2——”—2—8 &(2,%)+E(2,1—x)—2£'(2)
' 2 24pdn2 sin?rx 3
N+2 w2 || C
+ - T | |=+1InuL—1
N+8 |sinzex 3 |2 T Minmx
1 N+2 2 )
+ === +0(g°) 4.6)
2 N +8 sin?mx
and
r|é_,
Ozr=—N 2 Ly —a,py
esp,sp\0,50L)= =0 an K
X +————-£ £'(2,x)+E&'(2,1—x)+28'(2)
s1n7rx
N+2 m? || C T 1 N+2 2
— T || =+ 1nuL—1 -2
TNTS sintex 3 [2 ST M Gnmx | 2 N+8 sin?rx
27t N+2 C 2
B Mt —=—3—1InuL | |+0 4.7
3 N8 In27 5 3—Inu (e*) 4.7

where x =z /L,C =0.5772166. . . is Euler’s constant, and {'(a,x)=(3/9a){(a,x) (see Appendix A). The energy den-
sity profile for mixed boundary conditions is given by

r|4-1
N_ (2 —d(,, 7 )2
eo,SB(O,z,L)=7—ZTWE/T“L (uL)
m2cosmx |
X | ==t — 17 (2,x)—7'(2,1-x)+27'(2)
sin?mx 6
N+2 | m?cosmx , 7> || C T 1 N+2 72
+ + | | =+ npL —1 =
N +38 sinZmrx 6 2 np n sinmrx 2 N +8 sin?rx
m* N+2 T T 2
+ © Nt lnsimrx In 2cot2x +0(e%) |, (4.8)

where 7’(a,x)=(3/da)n(a,x) (see Appendix A). Note that egp (0,2, L)=eq sp(0,L —2z,L). In the absence of free sur-
faces periodic

rle- -
€per(0,2,L)=—N —i7 L4 f‘zi [—”6——8 §(2)+%xi§ %—ln2v+ln% +0(e?) 4.9)
and antiperiodic boundary conditions
r %—1 20,
Caper(0,2,L)=N——>——L ¢ J’% [%‘"8 '(2)+’1T—2xi§ %—ln%-i-lnﬂ'zé +0(az)l (4.10)
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yield finite-size effects which are spatially constant. Ac-
cording to the scaling behavior of e (7,z,L) shown in Eq.
(3.23) the universal scaling functions 4 ,,,(0,x) can be
determined from Egs. (4.6)—-(4.10) due to

1/v
L ~
go h+a,b(o!x) :

For the identification of the factor (L /£;)!/" in Eqgs.

(4.6)—(4.10) we use the & expansion of the exponent v
[1,2]

e,(0,z,L)=L"° 4.11)

boundary condition of type a, i.e.,

1/v

—d V4

&

ea’w,2(0,2)=Llim e, q(0,z2,L)=A, ,z

(4.15)

For a7b it is convenient to define 4,, such
that 8b,a(X)=g4(1—x) and so that
8a,p(x —0)gp ,(x —0)=— x “Hd=1/Y) which also implies
A, ,=A4,,. For periodlc and antlperiodic boundary

conditions we define the amplitudes A, and A4, by

_1____2_€N+2 +0(e?) (4.12)  the r.equirement gper(:x)=gaper('x)=1' Within the € ex-
v N+8 pansion we then obtain from Egs. (4.6)—(4.15), for equal
and of the correlation length amplitude &5 [31] boundary conditions,
+_ e N+2 2 — ‘
= 1+— 1-C)+ 4.1
&o 4N+8( )+ 0 (g7) (4.13) P __ﬁ . N+2 @163
. . . . . . 0,0 2 2d d/2 EN+8 .10a,
in the dimensional regularization scheme. For conveni-
ence we furthermore define universal scaling functions el N+2 T
84,5(x) by splitting off a universal amplitude 4, ;, 8o,0(x)= sin?mx 3 N+8 Meinmx
h (0,x)=4 (x) . (4.14)
+a,b abgab —€[§’(2 x)+§’(2,1—-x)—2§’(2)]
For a =b the amplitude 4, , is defined by the require- N +9
ment that g, ,(x —>0)=x —d+1/v 5o that A,, is the st (4.16b)
universal amplitude of the energy dens1ty profile N +8 6
€, ,2(0,2) in the limit of a semi-infinite system with a and
J
N +2
Aspsp=— Ao |1 Te (4.17a)
(2 N+2
= 2 g——— + — In2 . 4.17b
gSB,SB(x) g@,O(X)+4§( ) g(z) N+8(3 n2m) ] ( )
For mixed boundary conditions we find
e N+2
Aoss=A40,0 1+2 N8 SB,O » (4.18a)
80,58(x)=8sp o(1—x)
2 2
T° COSTX N+2 ™ T N +2 T s
= 1+ +— |1+ In [ —cot—
sin’mx *N+8 "sinmx | 6 | CN+8 " |29727
e N+2
— /2’ J— /2,1__ +2 12 _— 418b
e[n'(2,x)—7'( x)+279'(2)] 2 N+8 sin’rx ( )
For periodic and antiperiodic boundary conditions one has, for the universal amplitudes,
rfd-y
§'2) N+2 |1
=— 2) —+ Ind47r—C 4.19
Aper = TN i 6 { t2) N+s |2 7 “.19)
and
r % —1
72) N+2 |1 _
Agper =N 77 71(2)[ 2 N+8 5 FInm—C (4.20)
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whereas the corresponding scaling functions are constant:
8per(X)=gaper(X)=1 . (4.21)

We used the expansion

—d vy —(d=2) | _ N2 2
b X [1 EN+81nx+O(E))'

Due to the definition of the amplitude 4 g5 the scaling
functions g, sp(x) and ggp o(x) involve an additional am-
plitude in their asymptotic behavior for x —0. From Eq.
(4.18b) we obtain

e N+2 _ "
g@,SB(X—)O)= I_E.m d+1/ (4.22a)
and
€ N+2 —d+1/v
= |1ty 4.2
8sn,olx—0) |1 2 N+s [© (4.22b)
so that
Ao,@g@,@(x—)O): A(O,SEgO,SB(x""O)z A@’@x —d+1/v
(4.23a)
and
ASB,SBgSB,SB(x —0)= Agp 0&sp,o(x —0)
= Agpspx TV, (4.23b)

In the limit L — oo the energy density profiles e, ,(0,z,L)
therefore represent the semi-infinite limit e, ., ,(0,z) in
the form [see Eq. (4.15)]

1/v
z

&

Lhm ea'b(o,z,L)=ea, m/2(0’z)= Aﬂ,ﬂ:z -

(4.24)

where the boundary of type b is always assumed to be lo-
cated at z =L.

V. EXPONENTIATED
ENERGY DENSITY PROFILES

Within the € expansion the scaling functions g, ,(x)
contain logarithmic contributions that originate from the
series representation of functions involving e-dependent
powers such as

€

T =1+¢€ln

sinmx

T +O(e?) .
sSinmTx

(5.1

In order to obtain an approximation for the scaling func-
tion g, ,(x) in three dimensions one might simply extra-
polate the € expansion given by Egs. (4.16a)-(4.21) to
e=1. However, apart from general ambiguities in this
approach, in the vicinity of x =0 and 1 (i.e., near the sur-
face of the film) the simple extrapolation leads to a gross
misrepresentation of the scaling functions, as may al-
ready be seen from Eq. (5.1). Although valuable con-
clusions can be drawn from the € expansion in Egs.
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(4.16a)—(4.21) (see Sec. VI) it is numerically unreliable
and therefore useless for an analysis of the global shape of
the scaling functions g, ,(x).

In order to find a numerically more reliable representa-
tion of g, ,(x) in d =3 one can, for example, consider a
resummation or an exponentiation of the € expansion
given by Egs. (4.16a)—(4.21) that reproduces the limiting
behavior of g, ,(x) for x -0 and 1 correctly [see Egs.
(4.22a) and (4.23b)]. Moreover, the & expansions of
g0,0(x) and gy sp(x) for small x are consistent with the
short-distance behavior displayed in Eq. (1.3), which we
will therefore use as another restriction for the exponen-
tiation of Egs. (4.16a)-(4.21). The short-distance
behavior of ggp gp(x —0) and ggp o(x)=gg sp(1—x),
however, has a different form (see below).

First, we consider g, o(x), which represents the sim-
plest nontrivial scaling function. Due to the symmetry
80,0(x)=gg,0(1—x), the limiting behavior of gy o(x)
for x —1 is the same as for x —0. By inspection of Eq.
(4.16b) and using Egs. (4.12) and (5.1) one has, for
d=4—c¢,

80,0(x)=[5(d —2,x)+§&(d —2,1—x)—2¢(d —2)]

2—1/v
v

sinrx

NA2 7
N+8 6

+0(e?), (5.2)

which already fulfills the requirement imposed by Eq.
(4.23a). Note that {(d —2,x)+§(d —2,1—x)—2&(d —2)
remains finite in the limit d —3 [32] (see below). Howev-
er, expanding Eq. (5.2) for x <<1 one obtains

2
v
X2

g(o’@(x)=x'(d—l/v) [1+ p

,_ 1
v

+(d —2)(d —1)E(d)x?+0(x*)

__N+2 7 2
N +s ¢ 1O,

which is obviously at variance with Eq. (1.3). In order to
compensate for the additional x? contribution to the
short-distance behavior of g (x) shown in Eq. (5.3) we
employ the replacement

(5.3)

d—2—1/v

2
N+2m , (5.9

*N+s8 6

1

v

_m
sinmx

st
6

which is exact to order € within the £ expansion, because
d —2—1/v=0/(g). The expansion of Eq. (5.4) for x <<1
yields

d—2—1/v

s 1
v

6 | sinmx

f_[v

1

2
=x—d=1/7) 2__]L[x2+0(x“)] (5.5)
v |6

and therefore the short-distance behavior of gg o(x)
takes the corrected form
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go,0(x)=x TV 1+(d —2)(d —1)i(d)x?+0 (x*)]

In d =3 Eq. (5.7) can be written as [32]

(5_6) - 2—1/v
80,0(x)=—[¢(x)+(1—x)+2C] | =
if the replacement given by Eq. (5.4) is applied to Eq. Sinmx
(5.2). The exponentiated scaling function gg o(x) then 1 5 1=1/v
reads — 2= | = |- : (5.8)
v | 6 |sinmx

8o,0(x)=[5(d —2,x)+5(d —2,1—x)—28(d —2)]

- 2—1/v where ¢¥(x)=T"(x)/I'(x) denotes the digamma function
; and C =—1y(1)=0.57721566. . . is Euler’s constant.
sinTx However, Eq. (5.7) does not represent the only ex-
2 d—2—1/v ponentiation of g, »(x) which meets the above require-
1| T 0,0
—|12—— % |5 (5.7 ments concerning the short-distance behavior. Returning
v siarx to Eq. (4.16b) and noting that [32]
J
N +2 T N+2
= —x)— "(0,x)+&'(0,1—x)—2&'(0
1+8N+8 In pro— £(0,x)+£(0,1—x) 2§(0)+8N+8 [£'(0,x)+&( x)—2£'(0)]
1 1 1 2
= - —=,1—x|— 2—— |+ , 5.9
& (2 X +¢& |2 v’l x 2§[ " O(g”) (5.9)
we find the alternative exponentiated form [see Eq. (5.2)]
g0)o(x)=[4(d —2,%)+&(d —2,1—x)—25(d —2)]
1 1 1 N+2 2 2
X [E2—=x [+E[2——,1—x |—2¢ |2—= | | — T+ : 5.1
¢ X & Lol £ |2 v] €N+86 O(g”) (5.10)
The expansion of Eq. (5.10) for x << 1 yields the short-distance behavior
gWo(x)=x "1™ 14 2L ’ [3—i ¢ |a—L [x4 14 (d —2)d — DEDx+0(x5"17)
’ v v v
N+2 7 )
“N+s 6 O (5.11)
which again disagrees with Eq. (1.3). However, in this case the substitution
N+2 7° 1 1 1
— - - = - = — —4,1—x)— —4 .
evTs 6 1275 1375 1614 |[6d —4x)+8d —4,1—x)—28(d —4)], (5.12)
which is exact to order &, recasts Eq. (5.11) into the form [see Eq. (5.6)]
gdlo(x)=x "=V 14+(d —2)(d —1){(d)x 40 (x4 T271/)] (5.13)
so that the exponentiation
880 (x)=[6(d —2,%)+£(d —2,1-x)=26(d —2)] [€ [2— % | +£ (2—%,1—): -2 |2—— ] l
1 1 1
- 2—; 3—: & 4——v— [§(d —4,x)+&(d —4,1—x)—28(d —4)] (5.14)
yields an alternative for Eq. (5.7). In d =3 Eq. (5.14) takes the special form [see Eq. (5.8)]
g0,0(x)=—[P(x)+¥(1—x)+2C] |{ 2—;—,x +¢& 2——v—,l—x —2¢ 2——;
- 2—ly ‘3—i ¢ 4——1—]x(1——x), (5.15)
v v v
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where the identity §(—1,x)=1x (1—x)— & [32] has been
used.

There are still other possible exponentiations that are
in accordance with our requirements. For brevity we
quote only [19]

gFo(x)=[&(d —2,x)+&(d —2,1—x)—25(d —2)]

2—1/v

% m

sinmx

. (2—1/v)§(2)
E(1/v,x)+E(1/v,1—x)—2&(1/v)

(5.16)
and
g3 (x)=[&(d —2,x)+&(d —2,1—x)—2L(d —2)]
_1 1.l _1
X 1§12 % +§‘V,l x|[—2& (2 "
1 1 1
2 VH3 il [ K .
E(2,x)+&(2,1—x)—28E(2) |’ 517

which can be regarded as modifications of Egs. (5.7) and
(5.14), respectively. Despite the differences in the analyt-
ic form of the four exponentiations of g, o(x) given by
Egs. (5.7), (5.14), (5.16), and (5.17), the numerical
differences between them are quite small. The different
exponentiations all agree in their short-distance behavior
including the leading distant wall correction [see Egs.
(1.3), (5.6), and (5.13)] and therefore the largest deviations
between g o(x), g(ol,)@(x), g(az’)a(x), and gg,)a(x) can be
expected to occur at x =1. To give an impression of the
mutual deviations we quote the following numerical
values of the exponentiated scaling function gg o(x) ac-
cording to Egs. (5.7), (5.14), (5.16), and (5.17), respective-
ly,ind =3 and for N =1:

80,0(1)=4.10, g3lp(1)=4.14,

(5.18)
g@0(1)=4.04, g3p(1)=4.00,

where v=0.63 has been used for the correlation length
exponent in the Ising universality class [33]. The values
shown in Eq. (5.18) should be compared to g o(3)=3.17
from the extrapolated € expansion given by Egs.
(4.16b)—(4.21). According to Eq. (5.18) the relative mutu-
al deviation between gg o(x), g5)0(x), g(@z,)@(x% and
g(é’,’@(x) is at most 3.5% so that the above exponentia-
tions are all equally well suited for our purposes. In the
following for numerical convenience we choose gg o(x)
according to Eq. (5.7).

Second, we turn to the scaling function gg sp(x) [see
Eq. (4.18b)], which displays the same form of the short-
distance behavior as g o(x). Following the line of argu-

ment that leads to Eq. (5.7) one arrives at the exponen-
tiated form

2—1/v
=[n(d —2,x)—n(d —2,1— —
go,s8(x)=[n( x)—n( x)] prm—
2—1/v
+2n(d —2) lztcotlzr—x
2 1 d—1/v
v— T
dv—1 |sinmx ’ (5-19)
where in analogy with Eq. (5.4) the replacement
eN+2 o 2v—1 i
T v— T
2 N+8 sin?zx  dv—1 |sinmx (5.20

has been employed in order to obtain the correct form of
the short-distance behavior [see Egs. (1.3) and (5.6)]. In
fact, one obtains from Eq. (5.19) for x <<'1

_2v—1

=x =171
go,s5(x)=x [ dv—1

- l(d —2)d —1)n(d)

1

2
+ =2 | T (d —
S 277(d 2)

Xx%+ .- } , (5.21)

which leads to the exponentiated amplitude relation

Ao s 1—% =440 (5.22)

[see Egs. (4.16a) and (4.18a)]. Again, Eq. (5.19) does not
provide the only possible exponentiation of gg gp(x),
which is in accordance with the required short-distance
behavior [see Eq. (5.21)]. However, due to the small nu-
merical deviations of other exponentiations from the one
given above we refrain from discussing any alternatives
and in the following we stick to Eq. (5.19).

The scaling function ggp (x) is given by g sp(1—x)
[see Eq. (4.18b)] so that one has from Eq. (5.19)

2—1/v
o
= -—2) - 2R .
8sp,0(x) [n(d x)—n(d —2,1—x)] pr—
2—1/v
+2n(d —2) %tanlx
2 1 d—1/v
v— T
dv—1 | sinmx (5.23)

Using Eq. (5.23) in the limit x —0 the exponentiated am-
plitude relation

2v—1
—Aosp |1+ — | = 4snsp (5.24)
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can be inferred from Eq. (4.23a). Note that according to
Eq. (4.18a) one has Ay g5 = Asp »- In contrast to Egs.
(5.6) and (5.21) the leading distant wall correction to the
short-distance behavior of ggp o(x) according to Eg.
(5.23) is not governed by x“. It has been shown in Refs.
[19,20] that the leading distant wall correction in this
case is governed by an exponent smaller than d (see Sec.
VI).

Finally, we turn to the scaling function ggp sp(x). Ac-
cording to Eq. (4.17b), gsp s5(x) differs from g (x) only
by an additive constant. One option for an exponentia-
tion therefore is to adopt Eq. (5.7) for g o(x) and to ex-
trapolate the additive constant to e=1. This procedure
may look somewhat unsatisfactory. However, naive ex-
ponentiations of ggp sp(x) lead to contributions such as
§(d —2), which diverge in the limit d —3. Due to the
lack of information on the temperature dependence of the
energy density profiles, the additive renormalization
scheme given by Eq. (3.11) cannot be applied and there-
fore these divergences cannot be removed. We thus keep
the simple exponentiation scheme for ggp s5(x) indicated
J

N +8

above. In summary, we use the following exponentiated
scaling functions:

8o,0(x)=[5(d —2,x)+8(d —2,1—x)—28(d —2)]

2—1/v
T

sinmx

_ [2_1

v

d—2—1/v

il , (5.25a)

sinmx

T
6

2—1/v

go,s8(x)=[n(d —2,x)—n(d —2,1—x)]

sinx

+2n(d —2)

2—1/v
E—cotlx
2 2

d—1/v

T , (5.25b)

sinmx

_2v—1
dv—1

and

855,58(X)=80,0(x) +4£(2) [1—(4——d) [ﬂz—’+i\'—ﬁ(3— anW)l } (5.250)

£(2)

[see Eqgs. (4.16b)-(4.21), (5.7), and (5.19)]. For the ampli-
tudes A4,, [see Eqs. (4.16a)-(4.18a)] the naive exponen-
tiation

N+8C

‘ N +2
1—e

N+2 1

=1—Ces¢ ——y+0(€2)

N+8 2

2
> " +0 (g)

=T

and Eqgs. (5.22) and (5.24) yield

r|d+-1
_ N 2 v
A 0,0 ? 2d7rd/2 ’ (5.26a)
dv—1
Ao,sp= d—2y Ao0=A4sp0 > (5.26b)
and
(d+2)v—2
Aspsp=— Td=2m Agpo - (5.26¢)

Note that the prefactor N2 ¢ '779/2 jn Egs.
(4.16a)—(4.20) appears in any order of the perturbation
theory [see also Eq. (3.4)] and can therefore be taken as
an exact prefactor of the energy density profile. Numeri-
cal values for the amplitudes 4 o, 4 sp, and Agp sp

according to Egs. (5.26a)—-(5.26c) are displayed in Table I
for N=1and d =2, 3, and 4.

In order to demonstrate the effect of the boundary con-
ditions on the shape of the energy density profile
e, 5(0,z,L) for (a,b)=(0,0), (0,SB), and (SB,SB) we
evaluate Eqgs. (5.25a)-(5.26b) numerically for the Ising
universality class (N =1) in d =3. The functional form
of go,0(x) and ggp 5p(x) in d =3 can also be read off
from Eq. (5.8). Regarding gg s3(x) in d =3 we note that
7(1,x) can be represented by the digamma function ¥(x)
according to

7(1,x)=¢(x)—P(x /2)— In2 (5.27)
and that in particular
P(x)—yY(1—x)=—m cotmrx (5.28)

(see Ref. [32]). The scaling functions of the energy densi-
ty profiles ey (0,z,L), eq s5(0,2,L), and egp 55(0,z,L)
are displayed in Fig. 3, where for e ¢5(0,z,L) the O wall
is located at z=0. It is striking that 4 ¢80 o(x) and

TABLE 1. Amplitudes 44, ¢, 40,55, and Agp sp according to
Eqgs. (5.26a)—(5.26¢) for N=1and d =2, 3, and 4.

d Ao,0 Ao,ss Asp, sp
2 0.040

3 0.012 0.017 —0.022
4 0.0032 0.0032

—0.0032
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'0.SB govsﬂ
00 8oo

se.sp Bsp.sp

A, 8,@L)
(=

z/L

FIG. 3. Scaling functions Ay 0g0,0(z/L) (dashed line),
Ap,sp80,sp(z/L) (solid line; the @ wall is on the left-hand side),
and Agp sp8ss sp(z /L) (dash-dotted line) in d =3 and for N =1.
The amplitudes A4,, and the scaling functions g, ,(z/L) are
taken from Egs. (5.26) and (5.25), respectively.

A4 ¢, sp80,sp(x) almost coincide up to distances in the or-
der of 25% of the film thickness from the @ wall, whereas
Ao sp8o,s8(x) and Agp sp8sp sp(X) are clearly distinct
even in the vicinity of the SB wall (x =1). Close to the
walls this behavior can be explained by the difference in
the leading distant wall correction to the corresponding
semi-infinite energy density profile [see Eq. (4.24)]. Near
an @ wall the leading correction to eg , »(0,2) is
governed by Ba,b(z/L)d [see Refs. [19,20], Sec. VI, and
Eqgs. (5.6) and (5.21)], where the coefficient B, , depends
on the combination (a,b) of the surface universality
classes. However, for z/L <0.25, (z/L)? with d =3 in
our case strongly suppresses the difference between B
and B, sp so that the deviation between e ((0,2z,L) and
ep,sp(0,2,L) only becomes visible sufficiently far from the
O wall (z =0). Near an SB wall the leading distant wall
correction is governed by an exponent approximately
equal to 1.5 in three dimensions (see Refs. [19,20] and
Sec. VI). Therefore the distant wall correction itself is
substantially larger near an SB wall than near an @ wall
and the deviation between e, 55(0,2,L) and egp 55(0,2,L)
for z < L becomes visible even much closer to the SB wall
(z=L). This means that an @ wall is far more robust
against distant wall perturbations than an SB wall. Ac-
cording to Fig. 3 this robustness of the @ wall remains
visible as a small deviation between e@y@(O,z,L) and
eg,sp(0,z,L) up to distances z well inside the film.

In two dimensions the surface-bulk (SB) multicritical
point does not exist for N > 1 so that we are restricted to
(a,b)=(0,0) for a direct comparison of the energy den-
sity profiles in d =2, 3, and 4. According to Eq. (1.5) the
energy density profile ey ¢(0,z,L) in a two-dimensional
strip reads, for the Ising universality class,

_m

€0 0(0,z,L)=A,L ~1— ,
0,0(0,z,L) € sinmx

(5.29)

where x =z /L. In order to identify the scaling function
g0,0(x) in d =2 we note that

(5.30)

which follows from Egs. (4.11), (4.14), and (4.15). By
decomposing the energy density profile given by Eq.
(5.29) according to Eq. (5.30) we find

€,0(0,z,L)=e, . »(0,L)g, ,(x),

go,0(x)= (5.31)

sinwx
for the Ising universality class in two dimensions. The
scaling function g o(x) in d =3 and for N =1 (v=0.63)
is taken from Eq. (5.7) and in d =4 g o(x) can be read
off from Eq. (4.16b) for e=0 [see also Eq. (5.25a) for
v=1]. The numerical evaluation of g4 o(x) in d =2, 3,
and 4 is displayed in Fig. 4, which shows that the ex-
ponentiated scaling function in d =3 does not intersect
the exact scaling functions in d =2 and 4. For fixed scal-
ing argument x g o(x) appears to be a monotonically
increasing function of the spatial dimension d. The eval-
uation of the € expansion of g o(x) [see Eq. (4.16b)] in
the vicinity of x =1 leads to the same conclusion.

For mixed boundary conditions the scaling functions
84,5(x) in different dimensions in general have an inter-
section. An example is shown in Fig. 5, where g ¢ g5(x) is
shown in d =3 [see Eq. (5.25b)] and in d =4 [see Eq.
(4.16b) for e=0] for the Ising universality class. The
scaling function g, sp(x) changes its sign in the interior
of the film. The curves intersect, because near the walls
|go,s8(x —0)| grows faster in four dimensions than in
three dimensions. Note that ey gz in d =3,4 is not an-
tisymmetric around z =L /2 in contrast to e | o in d =2
[see Eq. (1.8)].

It is instructive to evaluate the exponentiated scaling
function gy o(x) [see Eq. (5.25a)] for N=1 in d =2,
where the exact result is known [see Eq. (5.31)]. From
Eq. (5.25a) we obtain ind =2 (v=1)

T
sinrx

1 .
1— =sin?mx

3 (5.32)

go,0(X)=

50

40

0.6 0.8 1

FIG. 4. Scaling functions gg o(z/L)=ep 0(0,2,L)/
€0, ,2(0,L) in d =2 (solid line), d =3 (dashed line), and d =4
(dash-dotted line) for N =1. Numerical evaluations of Eq.
(5.31) (d =2) and Eq. (5.25a) for N=1 in d =3 (v=0.63) and
d =4 are displayed, respectively.
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30

8oss@L)
(=}

-20

-30

FIG. 5. Scaling functions g sz(z/L) in d =3 (solid line) and
d =4 (dashed line) for N =1. Numerical evaluations of Eq.
(5.25b) for N=1in d =3 (v=0.63) and d =4 are displayed, re-
spectively.

As an alternative we also consider Eq. (5.14) from which
the result

g3lo(x)=—P(x)—¢P(1—x)—2C (5.33)

is obtained, where the identity §(—2,x)
=—1x(x —1)(2x —1) [32] has been used. For direct
comparison gg o{(x), according to Egs. (5.32) and (5.33)
together with the exact result given by Eq. (5.31), is
shown in Fig. 6. The values for gy o(x) predicted by
Egs. (5.32) and (5.33) are systematically too small. How-
ever, from the numerical point of view the exact shape of
80,0(x) is reasonably well approximated, whereby Eq.
(5.33) yields slightly better results than Eq. (5.32). The
other two exponentiations according to Egs. (5.16) and
(5.17), which are not shown in Fig. 6, yield approxima-
tions in the same range of precision as provided by Eqgs.
(5.32) and (5.33). However, in d =2 the exponentiations
according to Egs. (5.7), (5.14), (5.16), and (5.17) suffer

20

— exact

" 8o
15 = Lo alternative

0 0.2 0.4 0.6 0.8 1

FIG. 6. Scaling function g¢ ¢(z/L) in d =2 and for N=1
according to Eq. (5.31) (solid line), Eq. (5.32) (dashed line), and
Eq. (5.33) (dash-dotted line). The solid line shows the exact re-
sult, whereas the dashed and the dash-dotted lines show evalua-
tions of different exponentiations for the scaling function
g0,0(z/L)ind =2 and for N=1.

from the deficiency that they do not reproduce the
correct leading distant wall correction, which is given by
the x? term in the expansion

g@,@(x)= (5.34)

1
sinrx  x
Instead, leading distant wall corrections of the order x3
or higher are obtained from the exponentiations. In or-
der to investigate this deficiency systematically we now
compare the short-distance behavior of the exponentiated
energy density profiles with results from the € expansion.

VI. SHORT-DISTANCE BEHAVIOR
OF THE ENERGY DENSITY PROFILES

For the exponentiation of the energy density profiles in
Sec. V, some information about the structure of the
short-distance behavior of the scaling functions has been
used in an exponentiated form. However, the € expan-
sion of the energy density profiles given by Egs.
(4.6)—(4.10) or, equivalently, the € expansion of the scal-
ing functions g, ,(x) given by Egs. (4.16b)—(4.21) does
not necessarily contain enough information to identify
the exponents of the distant wall corrections to the re-
quired order in €. To illustrate this we consider the fol-
lowing example. Let g(x) be a universal scaling function
that has the short-distance behavior

g(x)=ax®+bxP+ --- .

With the € expansion of the amplitudes
a=ay+ea; +0(e?) and b =b,+eb, +0O(€?) and the ex-
ponents a=ay+ea,+O0 (e?) and f=PB,+¢eB;+ 0 (¢?), we
have to first order in €

(6.1

g(x)=x"[ay+¢e(a, +aya, Inx)+0(e?)]

+xP0by+e(by +boB, Inx)+0(2)]+ - - - .
6.2)

If ay# B, the coefficients @, and b, can be identified from
Eq. (6.2) by inspection and, knowing a, and b, the loga-
rithmic terms yield a; and 3, so that Eq. (6.1) can indeed
be reconstructed from Eq. (6.2), where amplitudes and
exponents are known to order €. However, if ay=/3, this
is no longer possible. As a, and b, cannot be identified
from Eq. (6.2), in this case a; and B, remain unknown as
well.

In order to obtain the correct short-distance behavior
of the energy density profiles to first order in € from the ¢
expansion given by Egs. (4.6)-(4.10) additional informa-
tion about the exponents of the distant wall corrections is
needed. This additional information can be obtained
from the short-distance expansion of the energy density
scaling operator near the wall in a semi-infinite geometry
[19,20]. The exponents in question are given by the scal-
ing dimensions of the surface operators, which govern the
short-distance expansion of the energy density. Near an
@ wall the leading distant wall correction is governed by
the exponent d =4—¢ [18-20] so that the structure of
the short-distance behavior anticipated by Eq. (1.3) [12] is
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indeed correct. Near an SB wall the leading distant wall
correction is governed by the exponent d —1—® /v<d
[19,20], where

(6.3)

is the so-called crossover exponent [5]. The next-to-
leading distant wall corrections are governed by ex-
ponents that differ from the leading ones d and
d —1—® /v, respectively, by an amount of order &°
[19,20].

Using the above exponents the short-distance behavior
of the energy density profiles e, ,(0,2z,L) can be cast into
the form
d

e0,(0,z,L)=eg o (0,2z) [1+Bg,

Z
L

+ } (6.4a)

and

eSB’b(O,Z,L)

=eSB,w/2(O,Z) 1+ASB,I)

d—1—®/v
et
L

(6.4b)

where b =0,SB and eg ., ,,(0,z) and egp ,, 5(0,z) are
given by Eq. (4.15). From the € expansion of the energy
density profiles [see Egs. (4.6)-(4.10)] the coefficients
By, and Agp, can now be determined to order e. One
finds

_ 5,04 1 N+2 ]
Boo=64) [1=e | g+ 4 -1 | (6.52)
= {5,774 71 N+2
B@,SB 67](4) 1—e 6 77(4) 42 N+s ,
(6.5b)
- _ 72) N+2 |3 . w
4sp.0 4"(2)[1 1) Tw+s 27|
(6.5¢)
and
_ e Nv2
Asp sp 4§(2)[1 € €2) —_N+8[3 In(2m)] | | .
(6.5d)

It is a general deficiency of the exponentiated scaling
functions ggp o(x) and ggp sp(x) that Egs. (6.4a) and
(6.4b) are reproduced only in the Gaussian approxima-
tion (®=v=1) by the corresponding energy density
profiles egp (0,z,L) and egp 55(0,2,L) in general dimen-
sion d. The exponentiated energy density profile
esp 0(0,z,L) [see Eq. (5.23) and Egs. (5.26a)-(5.26c)]
yields various distant wall corrections with exponents
smaller than d. However, none of these is in accordance
with Egs. (6.4a) and (6.4b). The exponentiation of the en-
ergy density profile egp 55(0,2z,L) yields the exponent

d —1/v for the leading distant wall correction. In fact,
from the € expansions for v [see Eq. (4.2)] and ® [see Eq.
(6.3)] one finds d —1—®/v=d —1/v+O(e?), so that the
misrepresentation of the leading distant wall correction
by gsp sp(x) in Eq. (5.25¢) may be an artifact of the trun-
cation of the € expansion of Egs. (4.6)—(4.10) and in Egs.
(4.16b)—(4.21) after contributions of first order in €. The
exponentiated scaling functions gg o(x) and gg sp(x)
reproduce Egs. (6.4a) and (6.4b) by construction, but the
coefficients B, ¢ and B, sp in the exponentiated form do
not correctly incorporate the two-loop contribution
shown in Egs. (6.5a)—(6.5d) [see Egs. (5.6) and (5.21), re-
spectively]. The exponentiation scheme described in Sec.
V therefore only yields the global shape of the profiles in
an apparently reliable form (see Fig. 6). However, local
information such as the short-distance expansion is not
properly represented by the exponentiations discussed
here. In order to obtain this piece of information one has
to resort to the explicit short-distance expansion of the
energy density scaling operator within the field-theoretic
renormalization group [19,20].

VII. SUMMARY AND CONCLUSIONS

As a paradigm for scaling density profiles in critical
films in d dimensions we have studied the energy density
profiles of an O(N)-symmetric critical system for
symmetry-conserving boundary conditions by field-
theoretic methods. The following main results have been
obtained.

(i) By solving the renormalization-group equations for
the renormalized energy density profile it has been shown
that the singular part of the energy density profile is
governed by a scaling function that is universal up to a
nonuniversal amplitude factor. The amplitude factor can
be expressed by the nonuniversal bulk correlation length
amplitude, which allows one to identify the universal
scaling function from a field-theoretic calculation. If the
scaling function is determined this way, it depends on the
definition adopted for the bulk correlation length.

(ii) The energy density profiles and the corresponding
scaling functions have been calculated to two-loop order
at bulk criticality for symmetry-conserving boundary
conditions, i.e., for any combination of the @- and the
SB-surface universality classes at the surfaces of the film
and for periodic and antiperiodic boundary conditions,
where the profile is constant in the latter two cases.

(iii) Using the € expansion of the scaling functions and
some information about the short-distance behavior of
the energy density profiles simple exponentiations of the
scaling functions can be found. The exponentiation is not
unique, but different exponentiation schemes lead to al-
most identical numerical results. In d =3 a direct com-
parison of the energy density profiles in critical films for
(a,b)=(0,0), (O,SB), and (SB,SB) shows that an @
wall is much more robust against perturbations from the
second (far) wall than the SB wall. For small distances
from the wall the same conclusions can be drawn from a
short-distance expansion of the energy density scaling
operator. In d =2 and for (a,b)=(0, @), where an exact
result for the energy density profile is available, the ex-
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ponentiation scheme used here leads to a reasonable
agreement with the exact profile shape. Due to the ab-
sence of the SB multicritical point in d =2 and for N = 1
an extension of our considerations to the order parameter
or the energy density profile in the presence of surface
fields, i.e., symmetry-breaking boundary conditions, is
desirable in order to cover a wider range of boundary
conditions that are also realized in two dimensions.

(iv) With additional information from the short-
distance expansion of the energy density the coefficients
of the leading distant wall corrections for the energy den-
sity profile near an @ and an SB wall can be obtained
from the € expansion of the scaling functions. A compar-
ison of the short-distance behavior of the exponentiated
energy density profiles with corresponding results from
the € expansion shows that the exponentiation near an O
wall fails to represent the two-loop contribution to the
leading distant wall correction correctly. Near an SB
wall the exponentiation fails to give the correct exponent
of the leading distant wall correction, which is partly due
to the truncation of the € expansion at the order €. In or-
der to elucidate the structure of the short-distance
behavior of scaling density profiles an investigation of the
short-distance expansion by field-theoretic methods is re-
quired.
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APPENDIX A: INTEGRALS OVER HURWITZ
AND BIVARIATE 7 FUNCTIONS

In the course of the calculation of the energy density
profiles several integrals over Hurwitz and bivariate 7
functions have to be evaluated in dimensional regulariza-
tion. In the following these integrals will be discussed in
some detail.

Both the Hurwitz and the bivariate 1 function are spe-
cial cases of Lerch’s function ®(p,a,x), which can be
defined as [32]

D(p,a,x)= i _p"

Al
n=0 (n +x)a ( )

for |p| <1 and x#0,—1,—2, ... . Usually p, a, and x
are denoted as the argument, the order, and the parame-
ter of Lerch’s function, respectively. Then the Hurwitz
function {(a,x) and the bivariate  function 7(a,x) have
the representation [32]

{la,x)=P(1,a,x), nla,x)=®(—1,a,x) (A2)
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so that the well-known series representations of {(a,x)
for Rea>1 and of n(a,x) for Rea>0 can be read off
from Eq. (Al). Furthermore, Lerch’s function obeys the
recursion relation [32]

®(p,a,x)=p®(p,a,x +1)+x~ %, (A3)

which generalizes the recursion relations for §{(a,x) and
7n(a,x) accordingly.

The indefinite integral of ®(p,a,x) with respect to the
parameter x for a1 can be written as

f<1>(p,a,x)dx=?x—_—ll<l>(p,a—- 1,x) (A4)
and therefore one has for Rea <1
J ®p,a,x)dx =%®(p,a— 1,1), (A5)

where the recursion relation in Eq. (A3) has been used for
x =0. For p =1 and —1 the important identities

1 _ 1 ____2_ _
foé(a,x)dx—o, fon(a,x)dx 1_0[77(& 1) (A6)

follow provided Rea < 1. The calculation of the energy
density profiles involves Hurwitz and bivariate 1 func-
tions with dimension-dependent orders a. For the spatial
dimensions d of interest the condition Rea < 1, which is
necessary for the validity of Eq. (A6), is not satisfied.
However, in the spirit of the dimensional regularization
scheme the right-hand sides of Eq. (A6) are interpreted as
the analytic continuations of the corresponding integrals
to the region Rea > 1. For the integral over the Hurwitz
function this is trivial, for the integral over the bivariate
7 function the analytic continuation is provided by the 7
function n(a)=mn(a,1) as a function of its order a. The
corresponding dimensionally regularized integrals re-
quired for the calculation of the energy density profiles
are therefore given by the right-hand sides of Eq. (A6).

A second type of integral involves products of Hurwitz
functions of the form §(a,x){(B,1—x) and products of
bivariate 7 functions of the same form, which therefore
can be generalized to the product ®(p,a,x)®(p,B,1—x)
of Lerch’s functions. For Rea <1 and Ref3< 1 we consid-
er the integral [[®(p,a,x)®(p,B,1—x)dx, which can be
evaluated in a straightforward manner if |p| <1. Using
Eq. (A1) one has
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f ®(p,a,x)®(p,B,1—x)dx= 3 p’"+"fo

myn=1

(m +x)*n

+x)B

© k
- k! dx
£ 800
f1+1 dx
j= 0 1
k k+1 dx
E f ok +1—x)F

Pk

G+x)%k —j+1—x)P

x4k +1—x)F

22 (k+1)a+B lfo xa(l_ )

=®(p,a+p—1,1)B(1—q,1

where B (u,v) is Euler’s beta function. The analytic con-
tinuation of Eq. (A7) to p =1 and —1 leads to the impor-
tant identities

J (@, x)6B,1-x)dx =g(a+A— DB (1~a,1-p)
(A8a)
and
foxn(a,x)n(B,l—-x)dx =g(a+p—1)B(1—a,1—B),
(A8b)

which hold rigorously for Rea <1 and Re3< 1. The en-
ergy density profiles involve integrals as shown in Eqgs.

J

—B),

(A7)

[

(A8a) and (A8b) with dimension-dependent orders a and
B. Again, the conditions Rea<1 and Ref<1 do not
hold for the spatial dimensions of interest. However, in
the same spirit as in Eq. (A6) the right-hand sides of Egs.
(A8a) and (A8b) provide the dimensionally regularized in-
tegrals.

A third type of integral involves products of Hurwitz
and bivariate 7 functions at the same value of the param-
eter x that has the generalized form ®(p,a,x)®(q,3,x).
The integral f é@(p,a,x)CD(q,B,x)dx, which we will dis-
cuss below, exists only in the region described by the in-
equalities Rea<1, ReB<1, and Re(a+pB)<1. For
|[pl <1 and |gq| <1 Eq. (A1) can be used to obtain the ex-
pansion

1
® b ’ @ ’ b d = mg"
fo (p,a,x)®(q,B,x)dx mnE“p q f m+x)“(n+x
dx
= 2 2
=0 n=m+1
dx
+ mf
mzo(pq) f 0o (m+x)*th
el b m+1 d
= z 2 (pg)™ qkf X
m=0 k=1

-3

m =0

(pg)™ [q I

__B__.‘ _
at+B— d>(pq,a+B 1,1)

dx
m n + n,.m
L) (m+x)n+xPp P4 I (n +x)%m +x)°

x%k +x)B

Ty ew(g,Bx +Ddx +p [T
m

+-PLL gpgatB—1,1)

dx
+ k m+1
P fm xBk +x)@ a+B—1

x ~Bd(p,a,x +1)dx]

(A9)

where Eq. (AS5) has been used. By inspection of the right-hand side of Eq. (A9) one finds that the condition
Re(a+pB)<1 is no longer needed so that an analytic continuation of the left-hand side of Eq. (A9) into the region
{a,B|Rea<1,Ref <1, Re(a+B)>1} has been achieved. For Re(a+S)>1 the limit p—e'* g—e ™™ for real A0
can be performed on the right-hand side of Eq. (A9), which leads to the integral

f0°°[x —ap~irp(e ~* B,x +1)+x Perd(er,a,x +1)]dx .

Note that the requirements Rea <1, Ref <1, and Re(a+3)>1 guarantee the convergence of the above integral for

A7#0. Using Eq. (A1) one finds for these conditions
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+1+x)

fow[x“a e *p(e M B,x +1)+x Perdle™ a,x +1)]dx
—M. —inA tk mA
e
E fo x%n +1+x)B 2 f
o —inA ©
o ®© dx .
=it . +eit
Zo (n+1)*7E~ 1f0 x*(1+x)P

=e—'*q>(e"m,a+ﬁ—1,1 B(a+B—1,1—a)+e*d®(e!

The analytic continuations of Lerch’s function and
Euler’s beta function back to the regime Re(a+) <1 es-
tablish the useful relation

J ®le™ ax)0e % B, x)dx
=e *@(e "M a+B—1,1)B(a+B—1,1—a)
+e*®(e*,a+B—1,1)B(a+B—1,1-B),
(A11)

where the right-hand side again provides the analytic
continuation of the integral in terms of the orders a and
~ B. Moreover, Eq. (A11) allows one to perform the limit
A—0, which together with the special value A= yields
the important identities

Je@ %8B, x)dx =Elat+B— DB (a+B~1,1-a)
+B(a+B—1,1—B)]

inA foo dx
nZo (n+1)2tB" 10 xP(1+4x)®

Aa+B—1,1)Bla+B—1,1—P) . (A10)
[
J @ xm(B,x)dx
= —n(a+B—1)[B(a+B—1,1—a)
+B(a+B—1,1—P)] (A12b)

for Rea <1, Ref<1, and Re(a+B) < 1. In the spirit of
Eq. (A6) the right-hand sides of Egs. (A12a) and (A12b)
provide the dimensional regularization of the correspond-
ing dimension-dependent integrals in the energy density
profiles.

APPENDIX B: PROPAGATORS AND VERTICES

In order to implement the perturbation expansion of
the energy density profiles in terms of Feynman graphs
the O(N)-symmetric Ginzburg-Landau Hamiltonian in a
film geometry [see Eq. (2.1)] that can be decomposed ac-
cording to H =Ff,+Ff; is written in spectral representa-
tion with respect to the parallel coordinate r;. The
Gaussian part 74, and the interaction part #; of the

Al2
and ( a) Hamiltonian # are given by
H (D= 1 pL d—1 0 d 5
ol ]—;fo dz [d?7'p 5, 2(P:2) |+ |5~ @(—p,2) | +(p*+7)®(p,2)-®(—p,2)
1 -
+Efd" p[c, ®(p,0)-®(—p,0)+c, ®(p,L)-®(—p,L)] (B1)
[
and =(¢,(p,2z), ..., ¢5(p,2z)). For a complete spectral rep-
resentation of Eq. (2.1) see Appendix A of Ref. [26]. In
H [ ®]= 4| e f dz [d? 'p,---d? Ip, the following we focus on Dirichlet (D), Neumann (N),
(2m periodic (per), and antiperiodic (aper) boundary condi-
=1 tions as given by Egs. (2.2) and (2.3). Note that for
X5 (p1tp2tp3tpy) periodic and antiperiodic boundary conditions the sur-
face contribution to #, in Eq. (B1) is absent. The free
X (®(p;,z)-P(pyyz)) propagator G,»(Jp)"’b(p,p’;z,z’) for the combination a,b of
boundary conditions is defined by the Gaussian average
X(®(p3,2)-D(py,2)) , .
(B2) G{P*p,p's2,2 )= ;(P,2); (P's2')) s, - (B3)
respectively, where bulk and surface fields have

been disregarded and the order parameter field ® is an
N  component vector according to  ®(p,z)

According to Eq. (B3) one obtains for 7=0 and 0=z,
z' < L in the case of equal boundary conditions
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Sijs(d"‘l)(p_l_pf)
V'p?+rsinh(V'p*+7L)

0)D,D ’. =
Gi(j) (p’P :zazl)—

sinh[%\/pz-k'r(z +z'—lz—z']]

X sinh[ 1V p?+7(2L —z —z'— |z —2'])] (B4)

and

8,8 " (p+p)

0)N, N, . —
Glf/ w (P»P 1212')_

cosh[ 1V p*+7(z +2z'—|z —2z'])]

V'p*+7sinh(V p?+7L)
Xcosh[1V'p2+7(2L —z —z'—|z —z'|)] . (BS)
The mixed boundary conditions are described by
8,8 "(p+p) —
GOPNp,p'2,2" )= ———= sinh[ 1V p>+7(z +2z'—|z —2z'])]
Y p-p V' p*+7cosh(V p?+7L) Ve
Xcosh[ LV p*+7(2L —z —z'—|z —z'])] . (B6)

For periodic and antiperiodic boundary conditions one
has

Gl_(jO)per(p’ pl;z’zl )

8,8 Vp+p)
2V p?+7sinh(+V'p?+17L)

Xcosh[1V'p*+7(L —2|z —z'])] (B7)
and

Gi(jO)aper( P, p’;z,z' )

5; 6(‘1_1 (p+p")
2\/p2+‘rcosh( 1Vp2+1L)

X sinh[1V'p?’+r(L —2[z —z']], (B8)
respectively. Note that G,-(jO’N "2(p,p’;2,2")
=G,-(}-°’D’N(p,p';L —z,L —z'). The interaction part #; of

the Ginzburg-Landau Hamiltonian [see Eq. (B2)] can be
written in the form

H (@)= f fdd_l <-d?p,
X 2

i,j,k,1
><¢j(p2,z)¢k(p3,z)¢1(p4,z) ,

where the vertex function v,j; is given by (see also Ref.

(p

Vijk1 (P1, P2, P3, P4 )P (P1,2)

1

1
Viji1(P1, P2y P3, P4) = 4, W omi 13

X (8,81 8,8, +8,8 1)
Xﬁ(d (p1+p2+p3+p4) (B9)

for all boundary conditions considered here.

APPENDIX C: ENERGY DENSITY PROFILES

TO ONE-LOOP ORDER
The one-loop contribution &, 1,,’(7', z,L) to the bare ener-

gy density profile €, ,(7,2z,L) can be represented in the
form

(r,2,L)= ——f——LG(O)"'b(p;z,z) , (€D

where G 0)"’b(p;z,z’) is defined by

Gi(,(})a,b(p,pr;z’zr)=8ij8(d—l)(p+pl )G(O)a,b(p;z’zl)
(c2)

The Green’s functions G(O)"’b(p;z,z’) can be read off
directly from Egs. (B4)—(B8) for all boundary conditions
under consideration.

At bulk criticality, i.e., for 7=0 the evaluation of é‘,ﬁ_lb)
according to Eq. (C1) requires the calculation of the in-
tegrals

«© © —lg—xy
f 0 smhy f o coshy &

as functions of the variables a and x. For the first in-
tegral one obtains for real > 1 and x > —1

o 1, —xy w pa@— 1, —(x+1)y
f T £ dy=2f y e
0 sinhy 0

=9 i fo“"ya—le —(x +1+2n)ydy

1—e™% &

1 o -1 -
=2y — L (a1,
,,2_"0 (2n +1+x)“ fO y 7
=21=ap(g)¢ |, X231 ] , (C3)

where I'(a) denotes the I" function. Likewise, the second
integral yields for a >0 and x > —1



52 ENERGY DENSITY PROFILES IN CRITICAL FILMS 1365

1

foo a e d x +1
coshy r=

T2

217N (a)y |a (C4)

The right-hand sides of Egs. (C3) and (C4) yield the ana-
lytic continuation of the corresponding integrals as func-

tions of a and x and thus provide the dimensional regu-
larization for Eq. (C1) (see below).

For Dirichlet-Dirichlet boundary conditions, which
correspond to the combination (a,b)=(0, Q) of surface
universality classes, one finds from Egs. (B4), (Cl1), and
(C2)

J

1

(1) sinhpz sinhp (L —z)
0,z,L)=—— -
¢0,0(0:5L)= f(27r)" p sinhpL
_N V7 w p®T pL__ ,p(2z—L)_ ,p(L—22)  , —pL
= —eP(22—L) 2 te 7P .
2 247472 d—1 fo sinhpL(e ¢ € e "Mdp
2
With the substitutions x =z /L, y =pL, and by using Eq. (C3) one finally obtains
r 521-—1
25)0(0,z,L D=y —@-2gd—2,2/L)+£d —2,1—2/L)—26d —2)] (C5)
2 dpd2

where {(d —2,0)=§(d —2,1)=§(d —2) in dimensional regularization [see Eq. (A3) for p =1] and the duplication for-
mula for the I" function

a+1

DNa)=2%" 1 —1/2F 5

r

a
> (C6)

for a=d —2 have been used.
Neumann-Neumann boundary conditions correspond to the pair (a,b)=(SB,SB) of surface universality classes.
From Eq. (BS) we conclude that

di- p coshpz coshp (L —z)

espsp(0,2,L)= ——f 2y b sinhpL
N \/_7;' 1 © pd_3 pL — — —
2 + p2z L)+ p(L 22)+ pLd .
2 24792 d—1 o sinhpL (e ¢ ¢ e "dp
2

In direct analogy with Eq. (C5) the result reads

r|4-
25 sp(0,2,L)= ——ZMWL —@=Dgd —2,z/L)+&Ed —2,1—z/L)+2£d —2)] . (cn

Dirichlet-Neumann boundary conditions, i.e., (a,b)=(0,SB) lead to the one-loop contribution

N  d%!p sinhpz coshp (L —z)
0,z,L
052(0:5L)= f (21r)d p coshpL
d—3
= ___I; 23/57'/2 1 000 cjc)’ShpL (epL+ep(22—“L)_ep(L ~22)__e—pL)dp
™ d—1
2

to the bare energy density profile &g 55(0,2,L).
final result

Here Eq. (C4) and the substitutions x =z /L and y =pL establish the

r|d-
20)s8(0,2,L) =" Saian L ~@=I[n(d —2,z/L)—n(d —2,1—z/L)+29(d —2)] , (C8)

where n(d —2,0)=—n(d —2,1)=—n(d —2) in dimensional regularization [see Eq. (A3) for p =—1] and Eq. (C6) has
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—z,L).

As expected, periodic and antiperiodic boundary conditions yield constant energy density profiles. To one-loop order
one has for periodic boundary conditions [see Egs. (B7), (C1), and (C2)]

) coshlpL
D —_ N 2
Zper(0,2,L)= f (217')"_1 2p sinhip
—_ N '\/_ 1 feo pd—3
2 2dg4/2 d sinhL
2

The substitution x =3pL, Eq. (C3), the dimensional regu-
larization §(d —2,0)=¢(d —2), and Eq. (C6) for
a=d —2 lead to the final result

r %~l
Zper(0,2,L)=—N 2,472 L4750 72d —2) .

(C9)

Likewise, one obtains for antiperiodic boundary condi-
tions

sinh1pL

_Nf dd_l

z -
(0.z,L)= (2m)?~1 2p coshipL

€ aper

N V7 1

2 pdgd2

__E.___ ePL/2_ g —PL/2)yg
0 coshlpL( € dp

so that Eq. (C4) and the dimensional regularization
n(d —2,0)= —n(d —2) yield

r %—l
D —(d—2)9d =27 _
Caper(0,2,L)=N a7 L 247 n(d —2),

(C10)

in analogy with Eq. (C9).

APPENDIX D: TWO-LOOP CONTRIBUTIONS
TO THE ENERGY DENSITY PROFILES

The two-loop contribution '(2’(1',2,L) to the bare ener-
gy density profile €, ,(7,z,L) is given by

(epL/2+e-—pL/2)dp .

f

z22)(r,z,L)
di-
N+2 ’
f f 2r )d—l T[GONpyz,2")]
d—1

3_111 (0)a,b

(2m)¢—!

X(py2z',2'), (D1)

where G©%5p;z,z') is defined by Eq. (C2) and by Egs.
(B4)-(B8). The second momentum integral in Eq. (D1)
has already been evaluated in Appendix C for 7=0 and
all boundary conditions under consideration. In order to
evaluate Eq. (D1) for 7=0 we first calculate the integral
over [G'9%®]2, First, we note that in analogy with Egs.
(C3) and (C4) the identities

fw hzl ~ —4T(@)[fla—1,x +1)—xglax +1)]
sin

(D2)

and

a—1,—x

© Yy
[T E——=4r(@)[n(a—1,x + D—xn(a,x +1)]
0 cosh®ly

(D3)

hold, which provide the dimensional regularization for
Eq. (D1) through their dependence on a. Furthermore,
we have, according to Eq. (A3), for x >0

fla—1,x +1)—x&(a,x +1)=f(a—1,x)—x&(a,x)
(D4)

and

Ma—1,x +1)—xn(a,x +1)=xn(a,x)—nla—1,x) .
(D5)

From Eqgs. (D2), (D4), and (D5) we obtain for D —D and
N — N boundary conditions
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o
d7'p ~oaay., e L 2 —(d—3)
(231 (G %pz,2") "= 247472 4 —3 L
X[&(d —4,|x —x')+&d —4,1—|x —x'])
+(1—|x —x'N[&(d —3,|x —x'|)—&d —3,1—|x —x'])]
+6(d —4,x +x')+4(d —4,2—x —x')
+(1—x —x")[{(d —3,x +x')—¢(d —3,2—x —x")]
F2{0(d —4,3(x +x'—|x —x'|)+5(d —4,1— L(x +x'—|x —x']))
—Lx +x'—|x —x'])
X[&(d —3,Lx +x"—[x —x'|)—&(d —3,1—Hx +x'—[x —x'|))]
+E(d —4,1x +x'+|x —x'| N+ E(d —4,1—L(x +x"+]x —x']))
+[1—1x +x'+|x —x'])]
X[&d—3,Lx +x"+[x —x'|))
—&(d —=3,1—Lx +x'+|x —x'|))]} +44(d —4)], (D6)

where the upper and the lower signs correspond to a =D and N, respectively, and x =z/L, x'=z'/L. For D —N
boundary conditions one obtains from Egs. (D3)-(DS5) the corresponding result

d
ri——1
f d?"'p [(GOPN(p; 7 7' = —1 2 [ —(d=3
(2m)? ! T 29742 d—3

X[p(d —4,1—|x —x'|)—n(d —4,|x —x'|)
—(1—|x —x'D[yp(d =3,|x —x'|)+x9(d —3,1—|x —x'|)]
—nld —4,x +x')—n(d —4,2—x —x')
—(1—x —x")[n(d —3,x +x')—n(d —3,2—x —x')]
+2{n(d —4,1(x +x'—|x —x'|)—n(d —4,1—L(x +x'—[x —x'|))
—x +x'—|x —x'D[(d —3,Lx +x'—|x —x'|))
+n(d —3,1—Hx +x"—|x —x'|))]
+n(d —4,1(x +x'+|x —x']))
—n(d —4,1—Lx +x'+|x —x'|))
+[1—L(x +x'+[|x —x']]
X[n(d —3,Lx +x"+|x —x'|))
+n(d —3,1—Lx +x'+|x —x'|))]} +4n(d —4)] .

(D7)
Finally, Egs. (D2) and (D3) lead to

—(d—3)

d-1
_d___.P__ (0)per( . "N12 — 1
f (2m)3 -1 [GTP(p;z,2")] 24472 4—3

2

X{&d —4,2|x —x'|)+&(d —4,2—2|x —x'|)
+(1=2]x —x'D[&(d —3,2]x —x'|)—E&(d —3,2—2|x —x'|)]+2L(d —4))} (D8)
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for periodic boundary conditions and to

—(d—3)

d—1
47 P rmo NI I |
f (Zﬂ)d_l [G aper(p,z,z )] 2d,n.d/2 d—3

X {n(d —4,2|x —x'|)+n(d —4,2—2|x —x’]|)

+(1—2|x —x'D[n(d —3,2|x —x'|)—n(d —3,2—2|x —x'|)]—2n(d —4)}

(DY)

for antiperiodic boundary conditions. In order to perform the remaining integration over z’ in Eq. (D1) in a systematic

way we decompose the integral into four parts. For D —D, N —N, and D — N boundary conditions we define

1990 = [ 'P#Hx Q8 (|x —x'dx”

1500 = [ P*Yx" QP4 (x +x")dx

(D10)
13°0)= [ 'Po¥x")Q%(x,x"dx" ,
1
Ig,b:— fo P“’b(x’)QZ'bdx' ,
where we have used the abbreviations
PPD(x)=¢&(d —2,x)+E&(d —2,1—x)—28(d —2) ,
P¥N(x)=¢(d —2,x)+&(d —2,1—x)+28(d —2) , (DI11)
PPN(x)=q(d —2,x)—n(d —2,1—x)+27(d —2) ,
and
Q7% (x)=¢(d —4,x)+&(d —4,1—x)+(1—x)[§(d —3,x)—&(d —3,1—x)] ,
QPM(x)=n(d —4,1—x)—n(d —4,x)—(1—x)[n(d —3,x)+n(d —3,1—x)],
0%%x,x")=§&(d —4,x)+&(d —4,1—x)—x[&(d —3,x)—&(d —3,1—x)]
+4(d —4,x')+6(d —4,1—x')—x'[§{(d —3,x"')—&(d —3,1—x")]
+&(d —3,1(x +x'+[x —x'|))—&(d —3,1—Lx +x'+|x —x'])) ,
D,N / (D12)
03" (x,x")=n(d —4,x)—n(d —4,1—x)—x[n(d —3,x)+7n(d —3,1—x)]
+n(d —4,x")—n(d —4,1—x')—x'[n(d —3,x")+n(d —3,1—x")]
+9(d —3,1(x +x'+|x —x'))+n(d —3,1—Lx +x"+|x —x'|)) ,
$¢=44(d —4),
DN =4q9(d —4)
I
for a =D and N. In obtaining Eq. (D12) we have used a,a( )= _ —4.7—
the identity Q%% x)=¢(d —4,x)+§(d —4,2—x)
+(1—x)[&(d —3,x)—&(d —3,2—x)],
l + r__ —_—!
FEx +x"—]x —x']) D13)

+f(Lx +x"+]x —x'N=F(x)+f(x') .

Furthermore, we note that —(1—x)[n(d —3,x)—n(d —3,2—x)],

PN (x)=—n(d —4,2—x)—n(d —4,x)



which is a direct consequence of Egs. (D4) and (D5). Us-
ing Egs. (D10)-(D12) one obtains the following represen-
tations for the two-loop contributions Efb) (0,z,L) to the
bare energy density profile g, ,(0,z,L):

N+2 2
12 22d7.rd

X[IPP(x)+12P(x)
—2I2P(x)+12P7,

FZ

L —2(d —3)
d—3

230(0,2,L)=—gN

r? i_

_ N+2 2
e6)55(0,5 L) =gN == — 3

L—2d=3
d—3

X[IPN(x)+12N(x)
(D14)
+202N(x)+12N7,

[ —2d=3)
d—3

N+2
23 50,2, L)=¢gN 5

22d7Td
X[IVN(x)+ 1YV (x)
+2IPN () + I
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For é‘i,zei and E;f,)er the above decomposition is not neces-
sary. Using Eqs. (D8) and (D9) and Eq. (A4) for p ==1,
Eq. (D1) can be evaluated directly in these two cases (see
below).

In order to evaluate analytically the integrals listed in
Eq. (D10), in the following we restrict ourselves to
d =4—¢ and apply the & expansion, where contributions
of order € can be disregarded. We first discuss the evalu-
ation of Eq. (D10) for Dirichlet-Dirichlet boundary con-
ditions in some detail; the remaining boundary conditions
can then be treated along the same line of argument.

Starting with I{%(x) we first note that

I$ o= [PeNxQ T (x —x")dx

+ [ TPe1—x)Q1(1—x —x")dx’ . (D15)

For a=b=D,N one has from Eq. (DI11)
P*%(1—x)=P%%x) and therefore Eq. (D15) can be writ-
ten in the form

F?’D(x)=foxdx’{§(2—e,x')+§(2—e,1—-x’)—2§(2—-e)}

X{§{(—e,x —x")+&(—e,1—(x —x"))

F[1—(x —x)][{(1—e,x —x")—{(1—¢g,1—(x —x')]} ,

where [32]
e =L LX) 2
{(—e,x) 2 x sln‘/.ZT+0(s)
so that

E(—e,x)+&(—e,1—x)=clIn(2sinmx)+O(e?) .

For convenience we represent Eq. (D17) as a sum of three parts. Using Eq. (D19) one has for the first part

FPP(x)= fo"dx'[g(z—e,x')+§(z—e,1—x’)—2§(2—e)][§(—e,x —x)+E(—e,1—(x —x"))]

= fo"x'e—z[g —g,x —x')+E(—g,1—(x —x'))]dx’+O(e)

= fo"x'e—z(x —x")edx'+ fo"x'ﬁ—z[g(—s,Hx —x")+E(—e, 1—(x —x'))]dx'+O(g)

xs—-l
e—1

=x2"1B(e—1,e+1)+2¢&(—¢)

+—eil [§(1—e,1+x)—5(1—¢,1—x)]+O(e)

IP%(x)=F¢%x)+F{%(1—x) . (D16)
Specifically, F?(x) is given by

(D17)

(D18)

(D19)

(D20)

in dimensional regularization according to Eq. (A4) for p =1. The first derivative of Eq. (D19) with respect to x yields

E(1—g,x)—&(1—¢,1—x)=mcotmx +O(g)
and we therefore obtain the € expansion

Ff’lb(x)= —arcotrx +O(g) .

(D21)

(D22)
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The second part of FP?(x) is chosen as
FPP(x)= fo"dx'[g(z—e,x')+g<2—a,1—x')](1—x +x)[E(1—g,x —x')—E(1—g,1—(x —x"))] . (D23)

The additional factor x’ in the integrand of Eq. (D23) can be abolished by an integration by parts with respect to
£(2—e,x")+E(2—e,1—x"), which leads to the alternative representation

FPPx)= |1=2- | [ax'[g1—ex —x)—f(1—e, 1= (x —x'D][§2—e,x") +£(2 ¢, 1=x")]
+5(1——f dx'[{(1—g,x —x")—&(1—e,1—(x —x')][£(1—g,x")—£(1 =€, 1—x")] (D24)
for FP;P(x). Using the identities [see Eq. (D21)]
3
E2,x)+E(2,1—x)= , E3,x)—£(3,1—x)="TS2TX (D25)
s~ mwTx

Eq. (D24) can be evaluated up to terms of order € in the same way as shown in Eq. (D20), although the calculation is
more involved here. The result reads

_ . 3 '
FPPx= (12 | {2 [g2—ex)+82—e,1—0)]+2 2L 4 42) Inx —4 [ Fin(x —x) [ T2 L1
’ 2 ||e x2 0 sindrx’ x"?
x 1 772 1
+ tar(x —x')— ——— ldx’
fo wcotm(x —x') —— it X7 dx ]
1 2 Inx T 1 ,
+ 0= la[g(l &%) —5(1—e, 1—x)] 42— 2 [ In(x —x') o |
x ’ 1 ’ 1 ’
+ [F|meotm(x —x')———— | |meotmx’——; |dx’ {+O(e) . (D26)
0 x—x x
The remainder of FP?P(x) is captured by the third part
F?’f’(x)=—2§(2~—e)f0x[l—(x —x)[E1—g,x —x")—E(1—g,1—(x —x'))]dx’ , (D27)
which can be evaluated directly by integrating by parts giving
FPP(x)=2£2—¢) | 2£(—e)—(1—x) In(2 sinmx ) — £ 2= LX) —&lZe= L, 1=x) (D28)
€ ele+1)
In shorthand notation we therefore find for I??(x) [see Eq. (D16)]
IID’D(x)=§§(—e)§(2——z—:)-—2§(2)ln(2sinﬂx)+F P(x)+FPP(1—x)+0(e) , (D29)
where Fﬁ’zD(x) is given by Eq. (D26).
We now turn to the second integral 22 (x) [see Eq. (D10)], which is given by
13”(:0:fo‘dx'{g<2—e,x')+§(2—e,1—x')—2§(2—s)}
X{f(—eg,x +x")+4(—g,2—x —x')+(1—x —x")[{(1—e,x +x")—&(1—g,2—x —x")]} , (D30)

where Eq. (D13) has been used. In analogy with Eq. (D17) we decompose Eq. (D30) into three parts. The first part is
defined as

FDD(x)—f dx'[£(2—e,x")+E(2—e,1—x")—2L2—e)][E(—g,x +x')+E(—e,2—x —x')] . (D31)
Following the procedure sketched in Eq. (D20) we find
Fg'lb(x)=l+ 1‘ +2£(2)+0(e) . (D32)

The second contribution to Eq. (D30) is written conveniently as FQ’ZD (x)+F Q’ZD (1—x), where

FPPx)= [ dx'[52—e,x")+62—e, 1—x)](x —x )51 —e, 1 —x +x")—{(1—e,1+x —x")] . (D33)
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Due to the similarities between Eqgs. (D33) and (D23) we skip the details of the calculation and quote only the result

Ff,’zb(x):%[g(I—E,x)'—é'(1“8,1—x)]*%[§(2—s,x)+§(2-—e,l—x)]

—2£(2)x Inx + [ [1—m(x —x")eotm(x —x")] | — 7272 - ——~ |dx’
0 sin“mwx x
— [ nGx —x") Sin’;;x, _x1,2 dx'+2x [ "In(x —x") —’%:;’—:T;’f——;% dx'+0(e) . (D34)
The last contribution to Eq. (D30) is given by
F2P(x)=202—¢) [ "(x'+x = DL —e,x +x')—L(1—e,2—x —x)Jdx” , (D35)
which is similar to Eq. (D27). Integration by parts in dimensional regularization yields
F2L(x)=2£(2)[ In(2sinmx)—1]+0(¢) , (D36)
so that we obtain for I2"?(x) in shorthand notation
I2P(x)=2£(2) In(2 sin7rx)+%+-I:1—x+F£§D(x)+F£§D(1—x)+0(z—:) , (D37)
where Ff’zb(x) is given by Eq. (D34).
According to Egs. (D10)-(D12) we have for the third integral 722 (x)
I?’D(x)=foldx'{g'(Z—e,x')-i-g‘(Z—s,1—x')—2§(2—e)}
X{f(—e,x)+5(—e,1—x)—x[{(1—g,x)—E(1—¢,1—x)]
+&(—e,x')+E(—e,1—x")—x'[§{(1—¢,x")—E(1—e,1—x")]
+&(1—g,Lx +x'+|x —x'))—&(1—g, 1 —1x +x'+|x —x'[)} , (D38)
which is again decomposed into three contributions. The first contribution is defined as
Ff’lp(x)=foldx’{g(Z—E,x’)—i-g(Z-s,1-—x’)—2§(2—e)}
X{&(—e,x)+&(—e1—x)—x[{(1—e,x)—&(1—e,1—x)]} . (D39)

According to Eq. (A6) we find for F 5,11.) (x) in dimensional regularization
FPP(x)=—2£2—e){&(—e,x)+E(—e, 1—x)—x[{(1—g,x)—E(1—¢,1—x)]}
=2£(2)mrx cotrx +O (¢g) , (D40)
where Egs. (D19) and (D21) have been used. The second contribution to I??(x) is defined as
FPP(x)= [ ldx' (62 —e,x ) +E2—e 1—x")~26(2—e)}
X{&(—g,x")+&(—e,1—x")—x'[{(1—e,x')—§(1—g,1—x")]} . (D41)
Noting that due to an integration by parts one has
foldx’x'[g‘(1——5,x’)—§'(1—e,1—x’)][é’(Z—a,x')+§(2—s,1-*x’)]=——2(T1_‘T)foldx’[é'(1-—s,x’)——§(l—s,l—x’)]2 ,

Eq. (D41) can be evaluated in closed form using Eqgs. (A8a), (A8b), (A12a), and (A12b). For brevity we quote only the
e-expanded result

2
ngzb(x>=%§<—e>§(2—e>+’77+0(e> : (D42)
The remainder of Eq. (D38) is collected in the last contribution
F£'3D(x)=foldx'{§(2—s,x')+§(2—e,1——x’)—2§(2—€)}
X{E(1—g,Hx +x"+|x —x'[)—E(1—e,1—Lx +x"+|x —x'|))} . (D43)
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Noting that

=1 0 i ex)—E(l—e1—
§(2—g,x)+§(2,1—x)= 1 ax[é‘(l g,x)—§(1—e,1—x)]

[see Eq. (A4)], we find for F{(x)

2
F&D(x)= —%Q’( -—5)§(2——e)—%cot2ﬂx —2£(2)mx cotmrx +2£(2) In(2 sinwx)+ O(¢g) , (D44)
which finally yields
2
I?’D(x)=%(1—cotzfn'x)+2§(2)ln(2sin'rrx)+0(e) ) (D45)

The last integral in Eq. (D10) is simple and yields

If’D=4§(*-e)foldx’[§(2—£,x’)+§(2—e,1—x’)—2§(2—s)]

=—8L(—e)(2—e)=4£(2)+0(¢) , (D46)

where only Eq. (A6) has been used. Collecting the additional terms from Egs. (D29), (D37), and (D45) one finds, ac-
cording to Eq. (D14),

T i__
~(2) _ N +2 2 L—Z(l—s)
e@’@(O,z,L)-——gN 12 22d77-d 1—¢

1
1—x

X

—g—g( —e)E(2— ) —4£(2) In(2 sinmx) — 721 —cot?mx ) + % +

+42(2)+FPP(x)+FPP(1—x)+FRP(x)+ F2P(1—x) | . (D47)
In order to evaluate Eq. (D47) further we note that according to Egs. (D26) and (D34) we have

FPP(x)+FPP(1—x)+FPP(x)+FPP(1—x)

N

_ Inx —1 In1—x)—1 1 1
[£(2—e,x)+£(2—e,1—x)]+2 2 +2 T +x+1_x

€

+4£(2)[(1—x) Inx +x In(1—x)]+JP2P(x)+JPP2(1—x)+0O(e) , (D48)
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where as can be read off directly from Egs. (D26) and (D34).
The first three integrals listed in Eq. (D50) can be ex-

JPP(x)=—4(1=x)PP(x)+ 1= 2 |TPP(x) pressed by J7(x) and J27(x) via

| IPP(x)=¢(2)Inx —L[JPP(x)] ,
D,D 140D y—_9yDD
HIPP )+ TP (0 =27 2P (x) (D49) IPD(x)=—[JPP(x)] , (D51)
and IPP(x)=1[xIDP(x)T ,
3 ’ . . . .

DD y— [* | mcosmx’ _l__ where the prime denotes the derivative with respect to x.
T x) fo Inx —x") sin3mx’ x3 dx’, The calculation of JPP(x) and J2P(x) can be con-

veniently performed using the series representation

, 1
mcotm(x —x')— -
x

IPP(x)= [
2 f0 -x T cotmx = 1 + 3 1__1 , (D52)
] x So|x+tn n
w? 1 , . o : .
X\ =7 |4, from which further useful identities follow by integrating
sinrx * or differentiating with respect to x. One obtains
IPP(x)= [[1—m(x —x')cotm(x —x")]
0 x
(D50) i
n
% 1 d’ JPP(x)=m2x + 2 cotmx InSX ) > —,
> 5 |dx’, "o x+n
sin‘“mx x (D53)
Jf'D(x)=fx mcotm(x —x')— _1 - In[1+Z
0 x—x 1 n
JP2P(x)=—Inx |mcotmx —— | — ,
4 "o x+n
X x',
where the summations are to be carried out over all in-
~ 1 tegers n except n =0. From Eqgs. (D51) and (D53) simple
JPP(x)= f In(x —x’) 3 —— |dx’, algebra leads to an explicit expression for J?2(x). Thus
sin‘mx’  x Eqgs. (D47) and (D48) yield the final result
J
r? g_ -
2 —2(1—¢)
~(2) _ N+2 L
= - 2—e,1—x)—2L(2—¢€)]+
€0.0(0,2,L) gN T Py — [§(2 g,x)+5(2—e x)—2£(2—¢)] S

? m?

-2 +O(e) (D54)

T
1+ In—
sin?mx 3 si
The two-loop contribution eSB )<5(0,z,L) to the bare energy density profile for Neumann-Neumann boundary condi-
tions differs from em (0,z,L) only in the sign of some contributions [see Egs. (D6), (D11), and (D14)]. We therefore
note only that

2 i_
2 —2(1—¢)
—(2) N+2 L _ 8. N . 201 2 i+ 1
e5p.55(0,2,L)=gN 2 YT 1—e 8é’( €)6(2—e)—4£(2) In(2 sinwx ) +m*(1—cot 7'rx)+x —x
—4L(2)+FPP(x)+F2P(1—x)+F2P(x)+F2P(1—x) [,  (D55)
which should be compared to Eq. (D47). From Eq. (D48) the final result
rt i21—_1 21—¢) 2
—(2) _ o N+2 L™ 12 oy N1
esp,58(0,2,L)=gN— p2dd 1—e [§(2 &x)+5(2—e 1=x)+20(2—e)] sin’mx
m? ? T 4
-2 —— | |1+ In— +—7%(2— In27)+O0(¢) (D56)
sin?rx 3 sinmx 3
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can be obtained easily.

For 3'5(0,z,L), however, another calculation is required in which bivariate 7 functions replace the Hurwitz func-

tions [see, Egs. (D7), (D11), and (D12)]. As shown in Appendix A, Hurwitz and bivariate 7 functions can be treated on
the same footing so that the calculation follows the same route as for 602,)@(0,2,L). We will therefore refrain from

reproducing the details here and quote only the main results according to the above definitions. Starting from Eq.
(D10) we note that

IPN(x)=— %n( —e)n(2—e)—2n(2)(1—2x) In tan%x —477(2)f0x1n tan%t dt —FPV(x)+ FPN(1—x)+0(e) ,

If’”(x)=~%+1—1—;+2n(2)(1~2x)1ntan%x +4n(2)foxlntan%t dt+F2N(x)—F2N(1—x)+0(e),
(D57)
I?’N(x)=~l_—ﬂ;-———2n(2)lntan1x +0(e),
2 sin’mx 2
I2N=47(2)+0(e),
where
FPN(x)= 1—% [%[n(Z—s,x)—n(Z—s,1—x)]+2in—le——477(2)1nx—~4J?’N(x)+Jf’N(x)]
1 2 Inx DN DN
——— {2 (1 —g,x)+y(1—¢,1—x)]+2% —27P : + ,
2(1—s)le[n(1 g,x)+n(l—e x)]+ . 279N x)+T9 N (x) t+0(g)
1 x (D58)
F?’N(x)=—;[n(l—e,x)+n(1—£,l—x)]+?[n(2-—a,x)—17(2-—s,l—x)]
—25(2) Inx —2xJ1D’N(x)+-;—Jf’N(x)+J§”N(x)—%Jﬁ"”(x)+0(e) .
In Egs. (D57) and (D58) we have used the identity
17(*e,x)-'q(--e,l-x)=——alntan%x+0(52) (D59)
[see Eq. (D19)] and the abbreviations
3 2
DN — [* ' T T T 1 ,
> =3 1 —_— —_—— —_——
JP Y (x) fo n(x —x') sntee 2 simmxl 2 dx’',
x 1 m? cosmx’ 1
JD,N — m _ _ ’
2" (%) fo sinm(x —x')  x —x' sin?mx’ x"? dx’,
2 '
TPV = [FIn(x —x) [T L1, (D60)
0 sin“mrx x'
JD’N(X)=fX a _ 1 o __L dx'
4 o | sinm(x —x’) x—x' sinmx’  x’ )

From Egs. (D14) and (D58) we thus find in analogy with Egs. (D47) and (D48)
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r2 i_
2 —2(1—¢)
_ N+2 L
26580,z L)=gN ==~ 1,

2 8 N2
X [*:[n(Z £,x)—n(2—¢g,1—x)] 877( em(2—e) x +
—47(2)[x In(1—x)—(1—x)Inx ]—2

—47(2)In tan%x +4n(2)+JPN(x)+IPN(1—x)+O0(e)

where
JPN(x)=4(1—x)T PN (x)—(1—x)T DN (x)
+20PV(x)—T2N(x) . (D62)
In order to evaluate Egs. (D61) and (D62) we note that

JPN(x)=—n(2)Inx —L[JP¥(x)],

(D63)
IDN(x)=—[IP>N(x)]
[see also Eq. (D51)] and use the identity
T « (=1
—_— _— 4
sinmx =2_ n+x (D64)

-]

[see also Eq. (D52)], from which further useful identities
J

Inx —1

2
1—x

,dn(1—x)—1 T

x? (1—x)? sin?wx

’ (D61)

follow by taking derivatives with respect to x. We find

In 1—i
JPN(x)=—Inx 7T _1|_ 2(_1)n_____n__
3 sinmx  x — n+x ’
(D65)
_ In 1—%]
DN/ r—n T sinx n
'y = ____1 _ - _1 —_—
Ja 7 2sinx n T 2n§0( ) n+x

and finally obtain, for the two-loop -contribution
?(@2,)53(0,2,L) to the bare energy density profile for
Dirichlet-Neumann boundary conditions,

r2 i_
_ N+2 |2 L~ | 3 LT
#25(0,2,L)=gN o P 1 _?[77(2_8”‘)_77(2_5’I_XH'ZW(Z—E)]_sin27rx 3
) 2
goTicosmx | W _W_IHE‘ME+O(E) . (D66)
2% sin7x 3 w/2

Periodic and antiperiodic boundary conditions are much easier to handle because the one-loop momentum integral in
Eq. (D1) does not depend on z’ [see Egs. (C9) and (C10)]. Therefore Eq. (D1) does not involve products of Hurwitz or
bivariate 7 functions in the z’ integral, which greatly simplifies the evaluation of é‘m(O,z,L) and 22 (0,z,L). We

per aper
therefore quote only the final results
ri—<
(2) = (D g N+2 l—ep( _1
€per(0,2,L)= p,H.,(O,z,L)Zdﬂ’d/2 3 1= L®2 7% (—e€) |1 . (D67)
and
r 1—%
~(2) —=(1) g N+2 1—e _1
e,,pe,(O,z,L)—eapﬂ(O,z,L)Zd‘rl_d/2 3 1 L2 tq(—¢) |1 -l (D68)
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